bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2025–05–18
three papers selected by
Muhammad Rizwan, COMSATS University



  1. Chin J Cancer Res. 2025 Apr 30. 37(2): 250-267
      The intricate interactions between immune cells and tumors exert a profound influence on cancer progression and therapeutic efficacy. Within the tumor microenvironment, exosomes have emerged as pivotal mediators of intercellular communication, with their cargo of non-coding RNAs (ncRNAs) serving as key regulatory elements. This review examines the multifaceted roles of immune cell-derived exosomal ncRNAs in tumor biology. The involvement of various immune cells, including T cells, B cells, natural killer cells, macrophages, neutrophils, and myeloid-derived suppressor cells, in utilizing exosomal ncRNAs to regulate tumor initiation and progression is explored. Additionally, the biogenesis and delivery mechanisms of these immune cell-derived exosomal ncRNAs are discussed, alongside their potential clinical applications in cancer.
    Keywords:  Tumor; clinical applications; exosome; immune; non-coding RNAs
    DOI:  https://doi.org/10.21147/j.issn.1000-9604.2025.02.10
  2. Discov Oncol. 2025 May 12. 16(1): 741
      This review summarizes recent findings on the role of M2 tumor-associated macrophages (TAMs) and their exosome-derived non-coding RNAs (ncRNAs) in cancer cell resistance to therapeutics. M2 TAMs promote angiogenesis, suppress immune responses, and facilitate metastasis, thereby creating a tumor-supporting microenvironment. A range of antitumor drugs, including 5-FU, cisplatin, and gemcitabine, are mediated by M2 exosomes, each with distinct mechanisms of action. M2 exosomes transfer drug resistance capabilities via extracellular vesicles, especially exosomes containing miRNAs, lncRNAs, and circRNAs. These exosome mediate the development of tumor drug resistance by regulating signaling pathways such as PI3K/AKT, MAPK/ERK, Wnt/β-catenin M2 exosomes can regulate cellular responses by delivering bioactive molecules, including proteins, lipids, and ncRNA, which can also modulate cellular reactions to ionizing radiation, ultraviolet light, and chemotherapeutic agents. Targeting M2 TAMs and their exosome-mediated ncRNAs may offer new strategies to overcome drug resistance in cancer.
    Keywords:  Cancer Therapeutics; Drug resistance; Exosomes; M2 Macrophages; ncRNAs
    DOI:  https://doi.org/10.1007/s12672-025-02195-x
  3. Mol Biol Rep. 2025 May 10. 52(1): 451
      Cancer is a deadly disease marked by abnormal cell growth, proliferation, and metastasis-the spread of cancer from its origin to distant sites. A key factor in tumor progression is the tumor microenvironment (TME), which significantly influences tumor behavior and response to treatment. Within the TME, interactions between cancer cells and surrounding immune cells, particularly tumor-associated macrophages (TAMs), play a critical role in shaping immune responses. This review focuses on recent findings from a systematic PubMed search regarding cancer cell-derived exosomal glycoproteins and their role in modulating macrophage phenotypes. Tumor-derived exosomes, a type of extracellular vesicle (EV), carry glycoproteins-proteins with attached sugar chains-that can influence macrophage polarization. These glycoproteins can reprogram macrophages into either the M1 phenotype (proinflammatory and anti-tumor) or the M2 phenotype (anti-inflammatory and tumor-supportive). The M1 macrophages inhibit tumor progression, while M2 macrophages support tumor growth by promoting immune suppression and tissue remodeling. Understanding how exosomal glycoproteins drive this polarization offers critical insight into cancer immunology and may pave the way for novel therapeutic strategies targeting the TME.
    Keywords:  Cancer; Exosomes; Glycoproteins; Immunomodulation; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s11033-025-10535-x