bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2025–01–26
seven papers selected by
Muhammad Rizwan, COMSATS University



  1. Int J Nanomedicine. 2025 ;20 653-667
      In recent years, with an increasingly profound comprehension of the tumor microenvironment, it has been discovered that the constituent cells within the immune microenvironment, such as macrophages, CD4+T cells, and CD8+T cells, interact with tumor cells in manners conducive to tumorigenesis and progression. Exosomes play a pivotal role as essential mediators for intercellular material exchange and signal transmission in this context. Tumor cell-derived exosomes carrying cargo such as PD-L1 and ncRNAs engage with CD8+T cells to induce cytotoxic responses and facilitate immune evasion, thereby promoting tumor advancement. When combined with current immune checkpoint inhibitors like anti-PD-L1/PD-1 therapy, enhancing CD8+T cell function through exosomal pathways while monitoring and augmenting therapeutic effects can significantly improve efficacy. This review delineates the crucial role of exosomes derived from both tumor cells and CD8+T cells within the tumor microenvironment along with their impact mechanisms on both tumor cells and CD8+T cells. Furthermore, it summarizes the potential for clinical treatment in this realm when integrated with existing immunotherapy methods-particularly exploring the feasibility of clinical translation alongside engineering materials science techniques.
    Keywords:  CD8+T; EVs; TME; exosome
    DOI:  https://doi.org/10.2147/IJN.S502363
  2. Eur J Med Chem. 2025 Jan 13. pii: S0223-5234(25)00043-1. [Epub ahead of print]285 117278
      Exosomes are critical mediators of cell-to-cell communication in physiological and pathological processes, due to their ability to deliver a variety of bioactive molecules. Tumor-derived exosomes (TDEs), in particular, carry carcinogenic molecules that contribute to tumor progression, metastasis, immune escape, and drug resistance. Thus, TDE inhibition has emerged as a promising strategy to combat cancer. In this review, we discuss the key mechanisms of TDE biogenesis and secretion, emphasizing their implications in tumorigenesis and cancer progression. Moreover, we provide an overview of small-molecule TDE inhibitors that target specific biogenesis and/or secretion pathways, highlighting their potential use in cancer treatment. Lastly, we present the existing obstacles and propose corresponding remedies for the future development of TDE inhibitors.
    Keywords:  Cancer treatment; Drug resistance; Exosome; Small molecule inhibitor; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.ejmech.2025.117278
  3. AAPS PharmSciTech. 2025 Jan 22. 26(1): 42
      The aim of the present study was to investigate the potential of human plasma derived exosomes for the delivery of hydroxyurea to enhance its therapeutic efficacy in breast cancer. Plasma derived exosomes were isolated using differential centrifugation along with ultrafiltration method. Hydroxyurea was encapsulated in exosomes using a freeze-thaw method. The exosomes and Exo-HU were characterized for their size distribution, drug entrapment efficiency, in-vitro drug release profile, morphological analysis and cytotoxic effects on MCF-7 cell line. The results showed a mean size of 178.8 nm and a zeta potential of -18.3 mV, indicating good stability and 70% encapsulation effectiveness for HU. Exo-HU produced sustained drug release action with a considerable percentage released within 72 h. The morphological analysis indicated that the plasma derived exosomes were spherical, and cup shaped. In cytotoxicity studies on MCF-7 cells, Exo-HU has reduced cell viability compared to HU and blank exosomes. Findings of this study showed that human plasma-derived exosomes have been considered as effective delivery vehicle for hydroxyurea, potentially improving breast cancer treatment outcomes.
    Keywords:  MCF-7; breast cancer; differential centrifugation; human plasma derived exosomes; hydroxyurea
    DOI:  https://doi.org/10.1208/s12249-024-03028-w
  4. Cancer Gene Ther. 2025 Jan 22.
      Ovarian cancer is a leading cause of cancer-related deaths in women, and the development of chemoresistance remains a major challenge during and after its treatment. Exosomes, small extracellular vesicles involved in intercellular communication, have emerged as potential biomarkers and therapeutic targets in ovarian cancer. This review summarizes the current literature on differences in exosomal protein/gene expression between chemosensitive and chemoresistant ovarian cancer, and the effects of exosomal modifications on chemotherapeutic response. Clinical studies have identified alterations in several exosomal components from ovarian cancer tissues and serum samples arising as a consequence of chemosensitivity, which indicates their potential usefulness as potential biomarkers for predicting the development of chemoresistance. Interventional investigations from in vitro and in vivo studies demonstrated that modulation of specific exosomal components can influence ovarian cancer cell phenotypes and individual responses to chemotherapy. Exosomal delivery of chemotherapeutic agents, such as cisplatin, has presented as a potential targeted drug delivery strategy for overcoming chemoresistance in preclinical models. In summary, this review highlights the potential for exosomal proteins and genes to be useful biomarkers for predicting chemotherapy response and being therapeutic targets for overcoming chemoresistance in ovarian cancer. However, future research is still needed to validate these findings and explore the clinical utility of exosomal biomarkers and therapeutics in ovarian cancer management. In addition, understanding the molecular mechanisms underlying exosome-mediated chemoresistance may provide valuable insights for the development of personalized therapeutic strategies, improving outcomes for patients with ovarian cancer.
    DOI:  https://doi.org/10.1038/s41417-025-00871-2
  5. Sci Rep. 2025 Jan 17. 15(1): 2320
      Glioblastoma (GBM) is highly malignant and grows rapidly, and there is currently a lack of effective treatments. Metabolism provides the basis for the occurrence and development of GBM. Pyruvate dehydrogenase A1 (PDHA1) is a key component in both the tricarboxylic acid cycle and glycolysis, playing an important role in the metabolic processes related to cancer, but its role in GBM remains unclear. Glioma associated mesenchymal stem cells (GaMSC) play a significant role in the development of glioma. This study aims to explore the relationship between GaMSC derived exosomes (GAMSC-EXO) and PDHA1, as well as the effects and mechanisms on GBM glucose metabolism. In this study, human GaMSC-derived exosomes were isolated and identified. The role of GAMSC-EXO in GBM proliferation, migration, invasion and glucose metabolism was investigated. The upstream miRNA of PDHA1 was predicted and the relationship between miR-21-5p and PDHA1 in GAMSC-EXO and its effect on GBM glucose metabolism was investigated. We found that GAMSCs promote GBM cell proliferation, migration, invasion and glycolysis by releasing exosomes. After inhibiting GBM glycolysis, GBM proliferation, migration and invasion abilities were weakened. MiR-21-5p in exosomes was identified as the miRNA that affects the above biological behaviors. Mechanismly, miR-21-5p directly binds to the mRNA of PDHA1 and downregulates its transcription, thereby promoting GBM glycolysis. Together, this study demonstrated that exosomal miR-21-5p from GAMSC promoted GBM proliferation, migration, invasion, and glycolysis by targeting PDHA1, which provided novel insights into the metabolic interactions between GAMSCs and GBM cells, emphasizing the importance of exosome-mediated communication in tumor progression.
    Keywords:  Exosome; Glioblastoma; Glioma associated mesenchymal stem cells; Glycolysis; miR-21-5p
    DOI:  https://doi.org/10.1038/s41598-025-86580-0
  6. Ther Adv Med Oncol. 2025 ;17 17588359241297529
      Bladder cancer was the 10th most commonly diagnosed cancer worldwide in 2020. Extracellular vesicles (EVs) are nano-sized membranous structures secreted by all types of cells into the extracellular space. EVs can transport proteins, lipids, or nucleic acids to specific target cells. What brings more attention and potential implications is the fact that cancer cells secrete more EVs than non-malignant cells. EVs are widely studied for their role in cancer development. This publication summarizes the impact of EVs secreted by urinary bladder cancer cells on urinary bladder cancer development and metastasis. EVs isolated from urinary bladder cancer cells affect other lower-grade cancer cells or normal cells by inducing different metabolic pathways (transforming growth factor β/Smads pathway; phosphoinositide 3-kinase/Akt pathway) that promote epithelial-mesenchymal transition. The cargo carried by EVs can also induce angiogenesis, another critical element in the development of bladder cancer, and modulate the immune system response in a tumor-beneficial manner. In summary, the transfer of substances produced by tumor cells via EVs to the environment influences many stages of tumor progression. An in-depth understanding of the role EVs play in the development of urinary bladder cancer is crucial for the development of future anticancer therapies.
    Keywords:  angiogenesis; extracellular vesicles; metastasis; tumor development; urinary bladder cancer
    DOI:  https://doi.org/10.1177/17588359241297529
  7. Indian J Clin Biochem. 2025 Jan;40(1): 12-24
      Liquid biopsy is gaining importance in oncology in the age of precision medicine. Extracellular vesicles (EVs), among other tumor-derived indicators, are isolated and analysed from bodily fluids. EVs are secreted by both healthy and cancerous cells and are lipid bilayer-enclosed particles that are diverse in size and molecular makeup. Since their quantity, phenotype, and molecular payload, which includes proteins, lipids, metabolites, and nucleic acids, mirror the nature and origin of parental cells, EVs are valuable transporters of cancer information in tumour context. This makes them interesting candidates for new biomarkers. Being closely linked to the parental cells in terms of composition, quantity, and roles is a crucial aspect of EVs. Multiple studies have shown the crucial part tumor-derived EVs plays in the development of cancer, and this subject is currently a hot one in the field of oncology. The clinical applications of EVs-based technology that are currently being tested in the areas of biomarkers, therapeutic targets, immune evasion tools, biologically designed immunotherapies, vaccines, neutralising approaches, targeting biogenesis, and extracorporeal removal were the main focus of this review. However, more bioengineering refinement is needed to address clinical and commercial limitations. The introduction of these new potential diagnostic tools into clinical practise has the potential to profoundly revolutionise the cancer field, primarily for solid tumours but also for haematological neoplasms. The development of EV-based therapies will be facilitated by improvements in EV engineering methodology and design, transforming the current pharmaceutical environment.
    Keywords:  Clinical applications; Extracellular vesicles; Innovative therapies; Lymphoma
    DOI:  https://doi.org/10.1007/s12291-023-01156-x