bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2024–07–14
eight papers selected by
Muhammad Rizwan, COMSATS University



  1. Transl Cancer Res. 2024 Jun 30. 13(6): 3090-3105
       Background and Objective: Exosomes are nanoscale extracellular vesicles secreted by cells, which can release bioactive macromolecules, such as microRNA (miRNA) to receptor cells. Exosomes can efficiently penetrate various biological barriers which mediate intercellular communication. MiRNA are a class of non-coding RNA that primarily regulate messenger RNA (mRNA) at the post-transcriptional level. MiRNA is abundant in exosomes, which plays an important role by being transported and released through exosomes secreted by lung cancer cells. This review aims to elucidate the roles of exosome-derived miRNAs in lung cancer.
    Methods: We focused on the roles of exosome-derived miRNAs in cancer occurrence and development, including angiogenesis, cell proliferation, invasion, metastasis, immune escape, drug resistance, and their clinical value as new diagnostic and prognostic markers for lung cancer.
    Key Content and Findings: Exosomal miRNA can not only affect angiogenesis of lung cancer, induce epithelial-mesenchymal transformation, and promote reprogramming of tumor microenvironment, but also affect immune regulation and drug resistance transmission and participate in regulating lung cancer cell proliferation. Therefore, understanding the regulatory roles of exosomal miRNAs in tumor invasion and metastasis can provide new ideas for the treatment of lung cancer.
    Conclusions: Exosomal miRNA can provide some unique ideas on how to improve the efficiency of diagnosis and treatment of lung cancer in the future. Targeting tumor-specific exosomal miRNA represents a new strategy for clinical treatment of lung cancer, which can provide potential non-invasive biomarkers in the early diagnosis of lung cancer. Investigation of the involvement of exosomal miRNAs in the occurrence and progression of tumors can yield new opportunities for the clinical diagnosis and treatment of lung cancer.
    Keywords:  Exosomes; lung cancer; review
    DOI:  https://doi.org/10.21037/tcr-23-2319
  2. Curr Top Med Chem. 2024 Jul 09.
      Cancer cells are among the many types of cells that release exosomes, which are nanovesicles. Because of their many potential applications, exosomes have recently garnered much attention from cancer researchers. The bioactive substances that exosomes release as cargo have been the subject of several investigations. The substances in question may operate as biomarkers for diagnosis or affect apoptosis, the immune system, the development and spread of cancer, and other processes. Others have begun to look at exosomes in experimental therapeutic trials because they believe they may be useful in the treatment of cancer. This review started with a short description of exosome biogenesis and key features. Next, the potential of tumor-derived exosomes and oncosomes to influence the immune system throughout the development of cancer, as well as alter tumor microenvironments (TMEs) and pre-metastatic niche creation, was investigated. Finally, there was talk of exosomes' possible use in cancer treatment. Furthermore, there is emerging consensus about the potential application of exosomes to be biological reprogrammers of cancer cells, either as carriers of naturally occurring chemicals, including anticancer medications, or as carriers of anticancer vaccines for immunotherapy as well as boron neutron capture therapy (BNCT). We briefly review the key ideas and logic behind this intriguing therapy recommendation.
    Keywords:  Cancer; Exosomal cancer cells reprogramming.; Exosomal cancer evolution; Exosomal cancer therapy; Exosomes; Oncosomes
    DOI:  https://doi.org/10.2174/0115680266304636240626055711
  3. Clin Transl Oncol. 2024 Jul 06.
      Exosomes, measuring between 30 and 150 nm in diameter, are small vesicles enclosed by a lipid bilayer membrane. They are released by various cells in the body and carry a diverse payload of molecules, including proteins, lipids, mRNA, and different RNA species such as long non-coding RNA, circular RNA, and microRNA (miRNA). With lengths of approximately 19-22 nucleotides, miRNAs constitute the predominant cargo in exosomes and serve as crucial regulators of protein biosynthesis. In cancer detection, exosomal miRNAs show promise as non-invasive biomarkers due to their stability and presence in various bodily fluids, aiding in early detection and precise diagnosis with specific miRNA signatures linked to different cancer types. Moreover, exosomal miRNAs influence treatment outcomes by affecting cellular processes like cell growth, cell death, and drug resistance, thereby impacting response to therapy. Additionally, they serve as indicators of disease progression and treatment response, providing insights that can guide treatment decisions and improve patient care. Through longitudinal studies, changes in exosomal miRNA profiles have been observed to correlate with disease progression, metastasis, and response to therapy, highlighting their potential for real-time monitoring of tumor dynamics and treatment efficacy. Understanding the intricate roles of exosomal miRNAs in cancer biology offers opportunities for developing innovative diagnostic tools and therapeutic strategies tailored to individual patients, ultimately advancing precision medicine approaches and improving outcomes for cancer patients. This review aims to provide an understanding of the role of exosomal miRNAs in cancer detection, treatment, and monitoring, shedding light on their potential for revolutionising oncology practices and patient care.
    Keywords:  Biomarkers; Cancer; Exosomes; Therapy; Tumor microenvironment; microRNA
    DOI:  https://doi.org/10.1007/s12094-024-03590-6
  4. Front Immunol. 2024 ;15 1401852
      Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
    Keywords:  biomarkers; cancer diagnosis; cancer treatment; exosomes; targeted delivery
    DOI:  https://doi.org/10.3389/fimmu.2024.1401852
  5. Front Immunol. 2024 ;15 1417758
      Exosomes represent a type of extracellular vesicles derived from the endosomal pathway that transport diverse molecular cargoes such as proteins, lipids, and nucleic acids. These cargoes have emerged as crucial elements impacting disease diagnosis, treatment, and prognosis, and are integral to the process of exosome formation. This review delves into the essential molecular cargoes implicated in the phases of exosome production and release. Emphasis is placed on their significance as cancer biomarkers and potential therapeutic targets, accompanied by an exploration of the obstacles and feasible applications linked to these developments.
    Keywords:  biogenesis; diagnosis; exosomes; molecular cargo; treatment
    DOI:  https://doi.org/10.3389/fimmu.2024.1417758
  6. Heliyon. 2024 Jun 30. 10(12): e32621
       Background: The exosome is a critical component of the intercellular communication., playing a vital role in regulating cell function. These small vesicles contain proteins, mRNAs, miRNAs, and lncRNAs, surrounded by lipid bilayer substances. Most cells in the human body can produce exosomes, released into various body fluids such as urine, blood, and cerebrospinal fluid. Bladder cancer is the most common tumor in the urinary system, with high recurrence and metastasis rates. Early diagnosis and treatment are crucial for improving patient outcomes.
    Methods: This study employed the PubMed search engine to retrieve publicly accessible data pertaining to urinary exosomes.
    Results: We summarize the origins and intricate biological characteristics of urinary exosomes, the introduction of research methodologies used in basic experiments to isolate and analyze these exosomes, the discussion of their applications and progress in the diagnosis and treatment of bladder cancer, and the exploration of the current limitations associated with using urinary exosomes as molecular biomarkers for diagnosing bladder cancer.
    Conclusion: Exosomes isolated from urine may be used as molecular biomarkers for early detection of bladder cancer.
    Keywords:  Biomarker; Bladder cancer diagnosis; Exosomes; Liquid biopsy; Urine
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e32621
  7. J Biomed Sci. 2024 Jul 11. 31(1): 67
      Exosomes are extracellular vesicles generated by all cells and they carry nucleic acids, proteins, lipids, and metabolites. They mediate the exchange of substances between cells,thereby affecting biological properties and activities of recipient cells. In this review, we briefly discuss the composition of exocomes and exosome isolation. We also review the clinical applications of exosomes in cancer biology as well as strategies in exosome-mediated targeted drug delivery systems. Finally, the application of exosomes in the context of cancer therapeutics both in practice and literature are discussed.
    Keywords:  Cancer diagnosis; Cancer therapy; Exosome; siRNA
    DOI:  https://doi.org/10.1186/s12929-024-01055-0
  8. Front Mol Biosci. 2024 ;11 1381789
      Exosomal microRNAs (miRNAs) have great potential in the fight against hepatocellular carcinoma (HCC), the fourth most common cause of cancer-related death worldwide. In this study, we explored the various applications of these small molecules while analyzing their complex roles in tumor development, metastasis, and changes in the tumor microenvironment. We also discussed the complex interactions that exist between exosomal miRNAs and other non-coding RNAs such as circular RNAs, and show how these interactions coordinate important biochemical pathways that propel the development of HCC. The possibility of targeting exosomal miRNAs for therapeutic intervention is paramount, even beyond their mechanistic significance. We also highlighted their growing potential as cutting-edge biomarkers that could lead to tailored treatment plans by enabling early identification, precise prognosis, and real-time treatment response monitoring. This thorough analysis revealed an intricate network of exosomal miRNAs lead to HCC progression. Finally, strategies for purification and isolation of exosomes and advanced biosensing techniques for detection of exosomal miRNAs are also discussed. Overall, this comprehensive review sheds light on the complex web of exosomal miRNAs in HCC, offering valuable insights for future advancements in diagnosis, prognosis, and ultimately, improved outcomes for patients battling this deadly disease.
    Keywords:  cancer biomarker; exosomal miRNAs; exosomes; hepatocellular carcinoma(HCC); liver cancer; non-coding RNAs
    DOI:  https://doi.org/10.3389/fmolb.2024.1381789