bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2024‒06‒02
ten papers selected by
Muhammad Rizwan, COMSATS University



  1. J Ovarian Res. 2024 May 25. 17(1): 113
      Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
    Keywords:  Diagnostics; Drug delivery; Drug resistance; Exosomes; Extracellular vesicles; Gynecological cancers; Metastasis; Ovarian cancer; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s13048-024-01417-0
  2. Biol Proced Online. 2024 May 27. 26(1): 15
      Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
    Keywords:  Aptamer; Cancer; Exosome; Extracellular vesicles (EVs); Target therapy
    DOI:  https://doi.org/10.1186/s12575-024-00245-2
  3. World J Gastroenterol. 2024 May 07. 30(17): 2369-2370
      Exosomes, the smallest extracellular vesicles, have gained significant attention as key mediators in intercellular communication, influencing both physiological and pathological processes, particularly in cancer progression. A recent review article by Wang et al was published in a timely manner to stimulate future research and facilitate practical developments for targeted treatment of hepatocellular carcinoma using exosomes, with a focus on the origin from which exosomes derive. If information about the mechanisms for delivering exosomes to specific cells is incorporated, the concept of targeted therapy for hepatocellular carcinoma using exosomes could be more comprehensively understood.
    Keywords:  Exosomal delivery; Hepatocellular carcinoma; MicroRNAs; Therapeutic targets
    DOI:  https://doi.org/10.3748/wjg.v30.i17.2369
  4. Heliyon. 2024 May 30. 10(10): e30808
      Background: Communication between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) plays a crucial role in accelerating nasopharyngeal cancer (NPC) metastasis and radioresistance. However, the mechanisms through which NPC cells regulate the properties and activation of TAMs during NPC progression are not yet fully understood.Methods: A high-metastatic NPC subclone (HMC) and a low-metastatic NPC subclone (LMC) were screened from the CNE-2 cell line and exosomes were collected from HMCs and LMCs, respectively. The effects of HMC- and LMC-derived exosomes (HMC-Exos and LMC-Exos) on the regulation of TAM activation were evaluated by assessing the levels of inflammation-related or immunosuppression-related genes. The role of miRNA-193b-3p (miR-193b) in mediating communication between NPCs and TAMs was assessed using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot analysis, Transwell assays, and clonogenic survival assays.
    Results: HMCs and HMC-Exos exhibited a greater capacity to facilitate macrophage protumorigenic activation than LMCs and LMC-Exos. miR-193b levels derived from HMC-Exos were higher than those from LMC-Exos, and miR-193b levels were higher in metastatic NPC tissue-derived TAMs than in non-metastatic NPC tissue-derived TAMs. The upregulated miR-193b was packaged into exosomes and transferred to macrophages. Functionally, miR-193b up-regulation accelerated TAM activation by directly targeting mitogen-activated protein/ERK kinase kinase 3 (MEKK3). As a result, miR-193b-overexpressed macrophages facilitated NPC cell invasion and radioresistance.
    Conclusions: These data revealed a critical role for exosomal miR-193b in mediating intercellular communication between NPC cells and macrophages, providing a potential target for NPC treatment.
    Keywords:  Exosome; Metastasis; Nasopharyngeal cancer; Tumor-associated macrophages; miR-193b
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e30808
  5. J Mol Cell Biol. 2024 May 25. pii: mjae025. [Epub ahead of print]
      Intercellular communication can be mediated by direct cell-to-cell contact and indirect interactions through secretion of soluble chemokines, cytokines, and growth factors. Extracellular vesicles (EVs) have emerged as important mediators of cell-to-cell and cell-to-environment communications. EVs from tumor cells, immune cells, and stromal cells can remodel the tumor microenvironment and promote cancer cell survival, proliferation, metastasis, immune evasion, and therapeutic resistance. Most importantly, EVs as natural nanoparticles can be manipulated to serve as a potent delivery system for targeted cancer therapy. EVs can be engineered or modified to improve their ability to target tumors and deliver therapeutic substances, such as chemotherapeutic drugs, nucleic acids, and proteins, for the treatment of cancer. This review provides an overview of the biogenesis and recycling of EVs, discusses their roles in cancer development, and highlights their potential as a delivery system for targeted cancer therapy.
    Keywords:  cancer therapy; exosome; immune response; metastasis; tumor microenvironment
    DOI:  https://doi.org/10.1093/jmcb/mjae025
  6. Life Sci. 2024 May 26. pii: S0024-3205(24)00333-3. [Epub ahead of print]350 122743
      Exosomes are crucial for the growth and spread of glioblastomas, an aggressive form of brain cancer. These tiny vesicles play a crucial role in the activation of signaling pathways and intercellular communication. They can also transfer a variety of biomolecules such as proteins, lipids and nucleic acids from donor to recipient cells. Exosomes can influence the immune response by regulating the activity of immune cells, and they are crucial for the growth and metastasis of glioblastoma cells. In addition, exosomes contribute to drug resistance during treatment, which is a major obstacle in the treatment of glioblastoma. By studying them, the diagnosis and prognosis of glioblastoma can be improved. Due to their high biocompatibility and lack of toxicity, they have become an attractive option for drug delivery. The development of exosomes as carriers of specific therapeutic agents could overcome some of the obstacles to effective treatment of glioblastoma. In this review, we address the potential of exosomes for the treatment of glioblastoma and show how they can be modified for this purpose.
    Keywords:  Diagnosis; Drug delivery; Exosomes; Glioblastoma; Immunotherapy; Radiotherapy
    DOI:  https://doi.org/10.1016/j.lfs.2024.122743
  7. Front Biosci (Landmark Ed). 2024 May 15. 29(5): 189
      BACKGROUND: It has been demonstrated that exosomes derived from HPV-16 E7-over-expressiong non-small cell lung cancer (NSCLC) cells (E7 Exo) trigger increased levels of epidermal growth factor receptor (EGFR) and miR-381-3p. The purpose of this investigation was to examine the role of E7 Exo in NSCLC angiogenesis, and to analyze the contribution of exosomal EGFR and miR-381-3p to it.METHODS: The influence of E7 Exo on the proliferation and migration of human umbilical vein endothelial cells (HUVECs) was assessed using colony formation and transwell migration assays. Experiments on both cells and animal models were conducted to evaluate the angiogenic effect of E7 Exo treatment. The involvement of exosomal EGFR and miR-381-3p in NSCLC angiogenesis was further investigated through suppressing exosome release or EGFR activation, or by over-expressing miR-381-3p.
    RESULTS: Treatment with E7 Exo increased the proliferation, migration, and tube formation capacities of HUVECs, as well as angiogenesis in animal models. The suppression of exosome release or EGFR activation in NSCLC cells decreased the E7-induced enhancements in HUVEC migration and tube formation, and notably reduced vascular endothelial growth factor A (VEGFA) and Ang-1 levels. HUVECs that combined miR-381-3p mimic transfection and E7 Exo treatment exhibited a more significant tube-forming capacity than E7 Exo-treated HUVECs alone, but were reversed by the miR-381-3p inhibitor.
    CONCLUSION: The angiogenesis induced by HPV-16 E7 in NSCLC is mediated through exosomal EGFR and miR-381-3p.
    Keywords:  EGFR; HPV-16 E7; NSCLC; angiogenesis; exosomes; miR-381-3p
    DOI:  https://doi.org/10.31083/j.fbl2905189
  8. J Nanobiotechnology. 2024 May 30. 22(1): 298
      BACKGROUND: Advanced hepatocellular carcinoma (HCC) can be treated with sorafenib, which is the primary choice for targeted therapy. Nevertheless, the effectiveness of sorafenib is greatly restricted due to resistance. Research has shown that exosomes and circular RNAs play a vital role in the cancer's malignant advancement. However, the significance of exosomal circular RNAs in the development of resistance to sorafenib in HCC remains uncertain.METHODS: Ultracentrifugation was utilized to isolate exosomes (Exo-SR) from the sorafenib-resistant HCC cells' culture medium. Transcriptome sequencing and differential expression gene analysis were used to identify the targets of Exo-SR action in HCC cells. To identify the targets of Exo-SR action in HCC cells, transcriptome sequencing and analysis of differential expression genes were employed. To evaluate the impact of exosomal circUPF2 on resistance to sorafenib in HCC, experiments involving gain-of-function and loss-of-function were conducted. RNA pull-down assays and mass spectrometry analysis were performed to identify the RNA-binding proteins interacting with circUPF2. RNA immunoprecipitation (RIP), RNA pull-down, electrophoretic mobility shift assay (EMSA), immunofluorescence (IF) -fluorescence in situ hybridization (FISH), and rescue assays were used to validate the interactions among circUPF2, IGF2BP2 and SLC7A11. Finally, a tumor xenograft assay was used to examine the biological functions and underlying mechanisms of Exo-SR and circUPF2 in vivo.
    RESULTS: A novel exosomal circRNA, circUPF2, was identified and revealed to be significantly enriched in Exo-SR. Exosomes with enriched circUPF2 enhanced sorafenib resistance by promoting SLC7A11 expression and suppressing ferroptosis in HCC cells. Mechanistically, circUPF2 acts as a framework to enhance the creation of the circUPF2-IGF2BP2-SLC7A11 ternary complex contributing to the stabilization of SLC7A11 mRNA. Consequently, exosomal circUPF2 promotes SLC7A11 expression and enhances the function of system Xc- in HCC cells, leading to decreased sensitivity to ferroptosis and resistance to sorafenib.
    CONCLUSIONS: The resistance to sorafenib in HCC is facilitated by the exosomal circUPF2, which promotes the formation of the circUPF2-IGF2BP2-SLC7A11 ternary complex and increases the stability of SLC7A11 mRNA. Focusing on exosomal circUPF2 could potentially be an innovative approach for HCC treatment.
    Keywords:  Exosomal circRNA; Ferroptosis; Hepatocellular carcinoma; SLC7A11
    DOI:  https://doi.org/10.1186/s12951-024-02582-6
  9. Mol Cell Probes. 2024 May 30. pii: S0890-8508(24)00016-1. [Epub ahead of print]76 101964
      Breast cancer (BRCA) is the most common cancer among women. Adriamycin (ADR), also known as doxorubicin (Dox), is a commonly used chemotherapeutic agent for BRCA patients, however, the susceptibility of tumor cells to develop resistance to Dox has severely limited its clinical use. One new promising therapeutic target for breast cancer patients is exosomes. The objective of this study was to investigate the role of exosomes in regulating Dox resistance in BRCA. In this study, the exosomes from both types of cells were extracted by differential centrifugation. The effect of exosomes on drug resistance was assessed by laser confocal microscopy, MTT assay, and qRT-PCR. The miRNA was transfected into cells using Lipofectamine 2000, which was then evaluated for downstream genes and changes in drug resistance. Exosomes from MCF-7 cells (MCF-7/exo) and MCF-7/ADR cells (ADR/exo) were effectively extracted in this study. The ADR/exo was able to endocytose MCF-7 cells and make them considerably more resistant to Dox. Moreover, we observed a significant difference in miR-34a-5p expression in MCF-7/ADR and ADR/exo compared to MCF-7 and MCF-7/exo. Among the miR-34a-5p target genes, NOTCH1 displayed a clear change with a negative correlation. In addition, when miR-34a-5p expression was elevated in MCF-7/ADR cells, the expression of miR-34a-5p in ADR/exo was also enhanced alongside NOTCH1, implying that exosomes may carry miRNA into and out of cells and perform their function. In conclusion, exosomes can influence Dox resistance in breast cancer cells by regulating miR-34a-5p/NOTCH1. These findings provide novel insights for research into the causes of tumor resistance and the enhancement of chemotherapy efficacy in breast cancer.
    Keywords:  Breast cancer; Chemoresistance; Doxorubicin; Exosome; miRNA
    DOI:  https://doi.org/10.1016/j.mcp.2024.101964
  10. J Cancer. 2024 ;15(11): 3441-3451
      Background: Chemoresistance is a key reason for treatment failure in colorectal cancer (CRC) patients. The tumor microenvironment of chemoresistant CRC is distinctly immunosuppressive, although the underlying mechanisms are unclear. Methods: The CRC data sets GSE69657 and GSE62080 were downloaded from the GEO database, and the correlation between TRPC5 and FAP expression was analyzed by Pearson method. The in-situ expression of transient receptor potential channel 5 (TRPC5) and fibroblast activation protein (FAP) in the CRC tissues was examined by immunohistochemistry. TRPC5 expression levels in the HCT8 and HCT116 cell lines and the corresponding 5-fluorouracil (5-FU)-resistant cell lines (HCT8R and HCT116R) were analyzed by western blotting and RT-PCR. Exosomes were isolated from the HCT8R and HCT116R cells and incubated with colorectal normal fibroblasts (NFs), and cancer-associated fibroblasts (CAFs)markers were detected. NFs were also incubated with exosomes isolated from TRPC5-knockdown HCT8R cells, and the changes in intracellular Ca2+ levels and C-X-C motif chemokine ligand 12 (CXCL12) secretion were analyzed. Results: TRPC5 and FAP expression showed positive correlation in the datasets. Immunostaining of CRC tissue specimens further revealed that high TRPC5 and FAP expressions were significantly associated with worse tumor regression. Furthermore, chemoresistant CRC cells expressed higher levels of TRPC5 compared to the chemosensitive cells, and knocking down TRPC5 reversed chemoresistance. Exosomes derived from CRC cells induced the transformation of NFs to CAFs. However, TRPC5-exosomes derived from chemoresistant CRC cells can promote CAFs to secrete more CXCL12. Conclusion: Chemoresistant CRC cells can induce CAFs activation and promote CXCL12 secretion through exosomal TRPC5.
    Keywords:  CXCL12; Cancer-associated fibroblast; Chemoresistance; Colorectal cancer; Transient receptor potential canonical 5
    DOI:  https://doi.org/10.7150/jca.95248