bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2023–08–06
two papers selected by
Matías Eduardo González Quiroz, Worker’s Hospital



  1. ACS Chem Biol. 2023 Jul 31.
      Pharmacological activation of the activating transcription factor 6 (ATF6) arm of the unfolded protein response (UPR) has proven useful for ameliorating proteostasis deficiencies in cellular and mouse models of numerous etiologically diverse diseases. Previous high-throughput screening efforts identified the small molecule AA147 as a potent and selective ATF6 activating compound that operates through a mechanism involving metabolic activation of its 2-amino-p-cresol substructure affording a quinone methide, which then covalently modifies a subset of endoplasmic reticulum (ER) protein disulfide isomerases (PDIs). Another compound identified in this screen, AA132, also contains a 2-amino-p-cresol moiety; however, this compound showed less transcriptional selectivity, instead globally activating all three arms of the UPR. Here, we show that AA132 activates global UPR signaling through a mechanism analogous to that of AA147, involving metabolic activation and covalent modification of proteins including multiple PDIs. Chemoproteomic-enabled analyses show that AA132 covalently modifies PDIs to a greater extent than AA147. However, the extent of PDI labeling by AA147 approaches a plateau more rapidly than PDI labeling by AA132. These observations together suggest that AA132 can access a larger pool of proteins for covalent modification, possibly because its activated form is less susceptible to quenching than activated AA147. In other words, the lower reactivity of activated AA132 allows it to persist longer and modify more PDIs in the cellular environment. Collectively, these results suggest that AA132 globally activates the UPR through increased engagement of ER PDIs. Consistent with this, reducing the cellular concentration of AA132 decreases PDI modifications and enables selective ATF6 activation. Our results highlight the relationship between metabolically activatable-electrophile stability, ER proteome reactivity, and the transcriptional response observed with the enaminone chemotype of ER proteostasis regulators, enabling continued development of next-generation ATF6 activating compounds.
    DOI:  https://doi.org/10.1021/acschembio.3c00042
  2. Life Sci. 2023 Jul 29. pii: S0024-3205(23)00618-5. [Epub ahead of print] 121983
      Alzheimer's disease (AD) is a progressive neurodegenerative condition that leads to memory loss and cognitive impairment over time. It is characterized by protein misfolding as well as prolonged cellular stress, such as perturbing calcium homeostasis and redox management. Numerous investigations have proven that endoplasmic reticulum failure may exhibit exacerbation of AD pathogenesis in AD patients, in-vivo and in-vitro models. The endoplasmic reticulum (ER) participates in a variety of biological functions including folding of protein, quality control, cholesterol production, and maintenance of calcium balance. A diverse range of physiological, pathological and pharmacological substances can interfere with ER activity and thus lead to exaggeration of ER stress. The unfolded protein response (UPR), an intracellular signaling network is stimulated due to ER stress. Three stress sensors found in the endoplasmic reticulum, the PERK, ATF6, and IRE1 transducers detect protein misfolding in the ER and trigger UPR, a complex system to maintain homeostasis. ER stress is linked to many of the major pathological processes that are seen in AD, including presenilin1 and 2 (PS1 and PS2) gene mutation, tau phosphorylation and β-amyloid formation. The role of ER stress and UPR in the pathophysiology of AD implies that they can be employed as potent therapeutic target. This study shows the relationship between ER and AD and how the pathogenesis of AD is influenced by the impact of ER stress. An effective method for the prevention or treatment of AD may involve therapeutic strategies that modify ER stress pathways.
    Keywords:  ATF6; Alzheimer's disease; Endoplasmic reticulum stress; IRE1; PERK; Unfolded protein response
    DOI:  https://doi.org/10.1016/j.lfs.2023.121983