bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2022–08–28
five papers selected by
Matías Eduardo González Quiroz, Worker’s Hospital



  1. Cell Mol Neurobiol. 2022 Aug 24.
      Excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propoinic acid (AMPA) receptors instigates excitotoxicity via enhanced calcium influx in the neurons thus inciting deleterious consequences. Additionally, Endoplasmic Reticulum (ER) is pivotal in maintaining the intracellular calcium balance. Considering this, studying the aftermath of enhanced calcium uptake by neurons and its effect on ER environment can assist in delineating the pathophysiological events incurred by excitotoxicty. The current study was premeditated to decipher the role of ER pertaining to calcium homeostasis in AMPA-induced excitotoxicity. The findings showed, increased intracellular calcium levels (measured by flowcytometry and spectroflourimeter using Fura 2AM) in AMPA excitotoxic animals (male Sprague dawely rats) (intra-hippocampal injection of 10 mM AMPA). Further, ER resident proteins like calnexin, PDI and ERp72 were found to be upregulated, which further modulated the functioning of ER membrane calcium channels viz. IP3R, RyR, and SERCA pump. Altered calcium homeostasis further led to ER stress and deranged the protein folding capacity of ER post AMPA toxicity, which was ascertained by unfolded protein response (UPR) pathway markers such as IRE1α, eIF2α, and ATF6α. Chemical chaperone, 4-phenybutric acid (4-PBA), ameliorated the protein folding capacity and subsequent UPR markers. In addition, modulation of calcium channels and calcium regulating machinery of ER post 4-PBA administration restored the calcium homeostasis. Therefore the study reinforces the significance of ER stress, a debilitating outcome of impaired calcium homeostasis, under AMPA-induced excitotoxicity. Also, employing chaperone-based therapeutic approach to curb ER stress can restore the calcium imbalance in the neuropathological diseases.
    Keywords:  4-phenybutric acid; Calcium homeostasis; ER stress; Excitotoxicity; Mitochondrial-associated membrane
    DOI:  https://doi.org/10.1007/s10571-022-01271-y
  2. Int J Mol Sci. 2022 Aug 12. pii: 9000. [Epub ahead of print]23(16):
      Respiratory syncytial virus (RSV) causes severe lower respiratory tract infections (LRTI) associated with decreased pulmonary function, asthma, and allergy. Recently, we demonstrated that RSV induces the hexosamine biosynthetic pathway via the unfolded protein response (UPR), which is a pathway controlling protein glycosylation and secretion of the extracellular matrix (ECM). Because the presence of matrix metalloproteinases and matricellular growth factors (TGF) is associated with severe LRTI, we studied the effect of RSV on ECM remodeling and found that RSV enhances the deposition of fibronectin-rich ECM by small airway epithelial cells in a manner highly dependent on the inositol requiring kinase (IRE1α)-XBP1 arm of the UPR. To understand this effect comprehensively, we applied pharmacoproteomics to understand the effect of the UPR on N-glycosylation and ECM secretion in RSV infection. We observe that RSV induces N-glycosylation and the secretion of proteins related to ECM organization, secretion, or proteins integral to plasma membranes, such as integrins, laminins, collagens, and ECM-modifying enzymes, in an IRE1α-XBP1 dependent manner. Using a murine paramyxovirus model that activates the UPR in vivo, we validate the IRE1α-XBP1-dependent secretion of ECM to alveolar space. This study extends understanding of the IRE1α-XBP1 pathway in regulating N-glycosylation coupled to structural remodeling of the epithelial basement membrane in RSV infection.
    Keywords:  IRE1α; N-glycosylation; XBP1; extracellular matrix; hexosamine biosynthetic pathway; unfolded protein response
    DOI:  https://doi.org/10.3390/ijms23169000
  3. Nat Commun. 2022 Aug 26. 13(1): 5033
      DAXX and ATRX are tumor suppressor proteins that form a histone H3.3 chaperone complex and are frequently mutated in cancers with the alternative lengthening of telomeres (ALT). Here, we show that DAXX and ATRX knock-out (KO) U87-T cells that have acquired ALT-like features have defects in p53 chromatin binding and DNA damage response. RNA-seq analysis revealed that p53 pathway is among the most perturbed. ChIP-seq and ATAC-seq revealed a genome-wide reduction in p53 DNA-binding and corresponding loss of chromatin accessibility at many p53 response elements across the genome. Both DAXX and ATRX null cells showed a depletion of histone H3.3 and accumulation of γH2AX at many p53 sites, including subtelomeres. These findings indicate that loss of DAXX or ATRX can compromise p53 chromatin binding and p53 DNA damage response in ALT-like cells, providing a link between histone composition, chromatin accessibility and tumor suppressor function of p53.
    DOI:  https://doi.org/10.1038/s41467-022-32680-8
  4. Int J Mol Sci. 2022 Aug 14. pii: 9113. [Epub ahead of print]23(16):
      It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared to type III latency BL cells. The other interesting finding of this study was that the inhibition of IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive B-cell lymphomas such as BL and PEL.
    Keywords:  BRCA-1; Burkitt lymphoma; DDR; IRE1α/XBP1; UPR; c-Myc
    DOI:  https://doi.org/10.3390/ijms23169113
  5. Int J Mol Sci. 2022 Aug 18. pii: 9329. [Epub ahead of print]23(16):
      DNA and RNA binding proteins (DRBPs) are a broad class of molecules that regulate numerous cellular processes across all living organisms, creating intricate dynamic multilevel networks to control nucleotide metabolism and gene expression. These interactions are highly regulated, and dysregulation contributes to the development of a variety of diseases, including cancer. An increasing number of proteins with DNA and/or RNA binding activities have been identified in recent years, and it is important to understand how their activities are related to the molecular mechanisms of cancer. In addition, many of these proteins have overlapping functions, and it is therefore essential to analyze not only the loss of function of individual factors, but also to group abnormalities into specific types of activities in regard to particular cancer types. In this review, we summarize the classes of DNA-binding, RNA-binding, and DRBPs, drawing particular attention to the similarities and differences between these protein classes. We also perform a cross-search analysis of relevant protein databases, together with our own pipeline, to identify DRBPs involved in cancer. We discuss the most common DRBPs and how they are related to specific cancers, reviewing their biochemical, molecular biological, and cellular properties to highlight their functions and potential as targets for treatment.
    Keywords:  DNA/RNA binding protein; biomarkers; cancer; mutation; targeted treatment
    DOI:  https://doi.org/10.3390/ijms23169329