bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2022‒06‒05
four papers selected by
Matías Eduardo González Quiroz
Worker’s Hospital


  1. J Biol Chem. 2022 May 30. pii: S0021-9258(22)00528-2. [Epub ahead of print] 102087
      Protein disulfide isomerases (PDIs) constitute a family of oxidoreductases promoting redox protein folding and quality control in the endoplasmic reticulum (ER). PDIs catalyze disulfide bond formation, isomerization and reduction, operating in concert with molecular chaperones to fold secretory cargoes in addition to directing misfolded proteins to be refolded or degraded. Importantly, PDIs are emerging as key components of the proteostasis network, integrating protein folding status with central surveillance mechanisms to balance proteostasis according to cellular needs. Recent advances in the field driven by the generation of new mouse models, human genetic studies, and omics methodologies, in addition to interventions using small molecules and gene therapy, have revealed the significance of PDIs to the physiology of the nervous system and their implications in pathologies, ranging from neurodevelopmental conditions to neurodegenerative diseases and traumatic injuries. Here, we review the principles of redox protein folding in the ER with a focus on current evidence linking genetic mutations and biochemical alterations to PDIs in the etiology of neurological conditions.
    Keywords:  endoplasmic reticulum; nervous system; neurodegenerative diseases; neurodevelopmental disorders; protein aggregation; protein disulfide isomerase; proteostasis; redox protein folding
    DOI:  https://doi.org/10.1016/j.jbc.2022.102087
  2. Acta Pharm Sin B. 2022 May;12(5): 2315-2329
      Pulmonary hypertension (PH) is a life-threatening disease characterized by pulmonary vascular remodeling, in which hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) plays an important role. The cysteine 674 (C674) in the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2) is the critical redox regulatory cysteine to regulate SERCA2 activity. Heterozygous SERCA2 C674S knock-in mice (SKI), where one copy of C674 was substituted by serine to represent partial C674 oxidative inactivation, developed significant pulmonary vascular remodeling resembling human PH, and their right ventricular systolic pressure modestly increased with age. In PASMCs, substitution of C674 activated inositol requiring enzyme 1 alpha (IRE1α) and spliced X-box binding protein 1 (XBP1s) pathway, accelerated cell cycle and cell proliferation, which reversed by IRE1α/XBP1s pathway inhibitor 4μ8C. In addition, suppressing the IRE1α/XBP1s pathway prevented pulmonary vascular remodeling caused by substitution of C674. Similar to SERCA2a, SERCA2b is also important to restrict the proliferation of PASMCs. Our study articulates the causal effect of C674 oxidative inactivation on the development of pulmonary vascular remodeling and PH, emphasizing the importance of C674 in restricting PASMC proliferation to maintain pulmonary vascular homeostasis. Moreover, the IRE1α/XBP1s pathway and SERCA2 might be potential targets for PH therapy.
    Keywords:  Endoplasmic reticulum stress; Oxidative stress; Pulmonary artery smooth muscle cell; Pulmonary hypertension; Pulmonary vascular remodeling; Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase
    DOI:  https://doi.org/10.1016/j.apsb.2021.12.025
  3. Nat Commun. 2022 Jun 02. 13(1): 3081
      Some misfolded protein conformations can bypass proteostasis machinery and remain soluble in vivo. This is an unexpected observation, as cellular quality control mechanisms should remove misfolded proteins. Three questions, then, are: how do long-lived, soluble, misfolded proteins bypass proteostasis? How widespread are such misfolded states? And how long do they persist? We address these questions using coarse-grain molecular dynamics simulations of the synthesis, termination, and post-translational dynamics of a representative set of cytosolic E. coli proteins. We predict that half of proteins exhibit misfolded subpopulations that bypass molecular chaperones, avoid aggregation, and will not be rapidly degraded, with some misfolded states persisting for months or longer. The surface properties of these misfolded states are native-like, suggesting they will remain soluble, while self-entanglements make them long-lived kinetic traps. In terms of function, we predict that one-third of proteins can misfold into soluble less-functional states. For the heavily entangled protein glycerol-3-phosphate dehydrogenase, limited-proteolysis mass spectrometry experiments interrogating misfolded conformations of the protein are consistent with the structural changes predicted by our simulations. These results therefore provide an explanation for how proteins can misfold into soluble conformations with reduced functionality that can bypass proteostasis, and indicate, unexpectedly, this may be a wide-spread phenomenon.
    DOI:  https://doi.org/10.1038/s41467-022-30548-5
  4. Trends Cell Biol. 2022 May 25. pii: S0962-8924(22)00115-5. [Epub ahead of print]
      DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
    Keywords:  DNA strand break; base excision repair; genetic disease; genome stability; neurodegeneration; poly(ADP-ribose) polymerase; single-strand break repair
    DOI:  https://doi.org/10.1016/j.tcb.2022.04.010