bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2021‒10‒31
eight papers selected by
Matías Eduardo González Quiroz
Worker’s Hospital


  1. Nat Rev Drug Discov. 2021 Oct 26.
      The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
    DOI:  https://doi.org/10.1038/s41573-021-00320-3
  2. Cell Tissue Res. 2021 Oct 29.
      In insects, the follicle cells (FCs) give rise to a single-layered tissue of binucleated professional secretory cells that surround the oocytes during oogenesis. In the latest stage of oocyte development, the FCs rapidly synthesize and secrete the chorion (eggshell) immediately before degenerating through apoptosis. Here, we used RT-qPCR, electron microscopy, and RNAi silencing to explore the role of the main unfolded protein response (UPR) receptors IRE1 and PERK, as well as the ultrastructure dynamics of the FCs during oogenesis of the insect vector of Chagas disease Rhodnius prolixus. We found that IRE1 and PERK mRNAs are highly expressed in the ovaries of vitellogenic females. Interestingly, we observed that IRE1 and PERK, as well as different isoforms of the chaperones Bip and PDI, have their FCs gene expression levels decreased during the vitellogenesis to choriogenesis transition. Using transmission electron microscopy, we observed that the downregulation of the UPR gene expression is accompanied by dramatic changes in the FCs ultrastructure, with an 80% reduction in the mean area of the ER tubules, and circularization and enlargement of the mitochondria. Additionally, we found that parental RNAi silencing of both IRE1 and PERK resulted in minor changes in the chorion protein composition and ultrastructure, accessed by urea extraction of the chorion proteins and scanning electron microscopy, respectively, but did not impact the overall levels of oviposition and F1 embryo development.
    Keywords:  Choriogenesis; Endoplasmic reticulum; Follicle cells; IRE1; PERK
    DOI:  https://doi.org/10.1007/s00441-021-03547-z
  3. EMBO Rep. 2021 Oct 26. e52509
      Aneuploidy is a chromosomal abnormality associated with poor prognosis in many cancer types. Here, we tested the hypothesis that the unfolded protein response (UPR) mechanistically links aneuploidy and local immune dysregulation. Using a single somatic copy number alteration (SCNA) score inclusive of whole-chromosome, chromosome arm, and focal alterations in a pan-cancer analysis of 9,375 samples in The Cancer Genome Atlas (TCGA) database, we found an inverse correlation with a cytotoxicity (CYT) score across disease stages. Co-expression patterns of UPR genes changed substantially between SCNAlow and SCNAhigh groups. Pathway activity scores showed increased activity of multiple branches of the UPR in response to aneuploidy. The PERK branch showed the strongest association with a reduced CYT score. The conditioned medium of aneuploid cells transmitted XBP1 splicing and caused IL-6 and arginase 1 transcription in receiver bone marrow-derived macrophages and markedly diminished the production of IFN-γ and granzyme B in activated human T cells. We propose the UPR as a mechanistic link between aneuploidy and immune dysregulation in the tumor microenvironment.
    Keywords:  T cells; aneuploidy; macrophages; tumor immune microenvironment; unfolded protein response
    DOI:  https://doi.org/10.15252/embr.202152509
  4. J Cell Biol. 2022 Jan 03. pii: e202103171. [Epub ahead of print]221(1):
      Cellular quiescence is a nonproliferative state required for cell survival under stress and during development. In most quiescent cells, proliferation is stopped in a reversible state of low Cdk1 kinase activity; in many organisms, however, quiescent states with high-Cdk1 activity can also be established through still uncharacterized stress or developmental mechanisms. Here, we used a microfluidics approach coupled to phenotypic classification by machine learning to identify stress pathways associated with starvation-triggered high-Cdk1 quiescent states in Saccharomyces cerevisiae. We found that low- and high-Cdk1 quiescent states shared a core of stress-associated processes, such as autophagy, protein aggregation, and mitochondrial up-regulation, but differed in the nuclear accumulation of the stress transcription factors Xbp1, Gln3, and Sfp1. The decision between low- or high-Cdk1 quiescence was controlled by cell cycle-independent accumulation of Xbp1, which acted as a time-delayed integrator of the duration of stress stimuli. Our results show how cell cycle-independent stress-activated factors promote cellular quiescence outside G1/G0.
    DOI:  https://doi.org/10.1083/jcb.202103171
  5. Nature. 2021 Oct;598(7882): S30-S31
      
    Keywords:  Health care; Infection; Medical research; Vaccines
    DOI:  https://doi.org/10.1038/d41586-021-02913-9
  6. Cell Discov. 2021 Oct 26. 7(1): 98
      The amino acid response (AAR) and unfolded protein response (UPR) pathways converge on eIF2α phosphorylation, which is catalyzed by Gcn2 and Perk, respectively, under different stresses. This close interconnection makes it difficult to specify different functions of AAR and UPR. Here, we generated a zebrafish model in which loss of threonyl-tRNA synthetase (Tars) induces angiogenesis dependent on Tars aminoacylation activity. Comparative transcriptome analysis of the tars-mutant and wild-type embryos with/without Gcn2- or Perk-inhibition reveals that only Gcn2-mediated AAR is activated in the tars-mutants, whereas Perk functions predominantly in normal development. Mechanistic analysis shows that, while a considerable amount of eIF2α is normally phosphorylated by Perk, the loss of Tars causes an accumulation of uncharged tRNAThr, which in turn activates Gcn2, leading to phosphorylation of an extra amount of eIF2α. The partial switchover of kinases for eIF2α largely overwhelms the functions of Perk in normal development. Interestingly, although inhibition of Gcn2 and Perk in this stress condition both can reduce the eIF2α phosphorylation levels, their functional consequences in the regulation of target genes and in the rescue of the angiogenic phenotypes are dramatically different. Indeed, genetic and pharmacological manipulations of these pathways validate that the Gcn2-mediated AAR, but not the Perk-mediated UPR, is required for tars-deficiency induced angiogenesis. Thus, the interconnected AAR and UPR pathways differentially regulate angiogenesis through selective functions and mutual competitions, reflecting the specificity and efficiency of multiple stress response pathways that evolve integrally to enable an organism to sense/respond precisely to various types of stresses.
    DOI:  https://doi.org/10.1038/s41421-021-00332-8
  7. Mol Biol Rep. 2021 Oct 26.
      BACKGROUND: The long-term use of dexamethasone (Dex), a well-known immunosuppressant, leads to an imbalance in bone metabolism and rapid decline of bone mineral density due to apoptosis of osteoblasts. The molecular mechanisms by which Dex induces osteoblast apoptosis remain unclear.MATERIALS AND METHODS: MC3T3-E1 cells were treated with 0, 10-8, 10-6, and 10-4 M Dex for 24 h. ATF6, phosphorylated PERK, PERK, phosphorylated IRE1, and IRE1 expression, cell apoptosis, and caspase-12 and caspase-3 activity were measured. CHOP expression and calcium ion influx rate were measured in cells treated with 0 and 10-4 M Dex for 24 h. The effect of 2-APB treatment was assessed in cells treated with 0 or 10-4 M Dex.
    RESULTS: Levels of ATF6 and phosphorylated PERK and IRE1 increased in a dose-dependent manner in MC3T3-E1 cells treated with 10-8, 10-6, and 10-4 M Dex, compared to the control group (P < 0.05). Cells treated with 10-6 and 10-4 M Dex had significantly increased apoptotic rates and caspase-12 and caspase-3 activities (P < 0.05). Cells treated with 10-4 M Dex had significantly increased CHOP levels and calcium ion influx rates (P < 0.05). Combined treatment with 10-4 M Dex and 2-APB abrogated the observed increases in cell apoptosis and caspase-12 and caspase-3 activities (P < 0.05).
    CONCLUSIONS: High doses of Dex induce CHOP expression by promoting calcium ion influx-dependent induction of ATF6, phosphorylated PERK and phosphorylated IRE1, which induce endoplasmic reticulum stress-mediated apoptosis in osteoblasts. 2-APB protects the osteoblasts from the effects of Dex, preventing endoplasmic reticulum stress-mediated apoptosis.
    Keywords:  Apoptosis; CHOP; Dexamethasone; Endoplasmic reticulum stress; Osteoblasts; Osteoporosis
    DOI:  https://doi.org/10.1007/s11033-021-06806-y
  8. DNA Repair (Amst). 2021 Oct 21. pii: S1568-7864(21)00199-3. [Epub ahead of print]108 103243
      The phosphorylation of histone variant H2AX and formation of γH2AX is a primary response to the DNA double-strand breaks (DSBs). Detection of γH2AX is a robust and sensitive tool for diagnosis of DNA damage and repair in pre-clinical drug discovery investigations. In addition, the replication stress also leads to the formation of γH2AX and cell death and so γH2AX can serve as a surrogate marker of drug-induced cytotoxicity. Recent advances in genomic research offer an opportunity to detect γH2AX as a specific biomarker for quantitative analysis of DNA damages and repair using high content screening technology and quantitative imaging analysis. The proposed approaches identify a wide range of genetic disorders and are applied in combination with other assays in drug discovery and also for the evaluation of the efficacy of various developmental drugs. In the current review, we provide recent insights into the potential of γH2AX biomarker as a powerful tool in genotoxicity analyses for the monitoring and managing of cancer diseases.
    Keywords:  DNA damage; Genetic imaging; Genotoxicity; H2A histone family; γH2AX
    DOI:  https://doi.org/10.1016/j.dnarep.2021.103243