bims-ershed Biomed News
on ER Stress in Health and Diseases
Issue of 2021‒03‒28
23 papers selected by
Matías Eduardo González Quiroz
Worker’s Hospital


  1. J Cancer. 2021 ;12(8): 2456-2464
      Endoplasmic reticulum resident protein 57 (ERp57) has a molecular weight of 57 kDa, belongs to the protein disulfide-isomerase (PDI) family, and is primarily located in the endoplasmic reticulum (ER). ERp57 functions in the quality control of nascent synthesized glycoproteins, participates in major histocompatibility complex (MHC) class I molecule assembly, regulates immune responses, maintains immunogenic cell death (ICD), regulates the unfolded protein response (UPR), functions as a 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) receptor, regulates the NF-κB and STAT3 pathways, and participates in DNA repair processes and cytoskeletal remodeling. Recent studies have reported ERp57 overexpression in various human cancers, and altered expression and aberrant functionality of ERp57 are associated with cancer growth and progression and changes in the chemosensitivity of cancers. ERp57 may become a potential biomarker and therapeutic target to combat cancer development and chemoresistance. Here, we summarize the available knowledge of the role of ERp57 in cancer and the underlying mechanisms.
    Keywords:  DNA repair.; ERp57/PDIA3; cancer; immune response; immunogenic cell death; unfolded protein response
    DOI:  https://doi.org/10.7150/jca.48707
  2. J Virol. 2021 Mar 24. pii: JVI.00453-21. [Epub ahead of print]
      Influenza A viruses (IAVs) utilize host shutoff mechanisms to limit antiviral gene expression and redirect translation machinery to the synthesis of viral proteins. Previously, we showed that IAV replication is sensitive to protein synthesis inhibitors that block translation initiation and induce formation of cytoplasmic condensates of untranslated messenger ribonucleoprotein complexes called stress granules (SGs). In this study, using an image-based high-content screen, we identified two thiopurines, 6-thioguanine (6-TG) and 6-thioguanosine (6-TGo), that triggered SG formation in IAV-infected cells and blocked IAV replication in a dose-dependent manner without eliciting SG formation in uninfected cells. 6-TG and 6-TGo selectively disrupted the synthesis and maturation of IAV glycoproteins hemagglutinin (HA) and neuraminidase (NA) without affecting the levels of the viral RNAs that encode them. By contrast, these thiopurines had minimal effect on other IAV proteins or the global host protein synthesis. Disruption of IAV glycoprotein accumulation by 6-TG and 6-TGo correlated with activation of unfolded protein response (UPR) sensors activating transcription factor-6 (ATF6), inositol requiring enzyme-1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), leading to downstream UPR gene expression. Treatment of infected cells with the chemical chaperone 4-phenylbutyric acid diminished thiopurine-induced UPR activation and partially restored the processing and accumulation of HA and NA. By contrast, chemical inhibition of the integrated stress response downstream of PERK restored accumulation of NA monomers but did not restore processing of viral glycoproteins. Genetic deletion of PERK enhanced the antiviral effect of 6-TG without causing overt cytotoxicity, suggesting that while UPR activation correlates with diminished viral glycoprotein accumulation, PERK could limit the antiviral effects of drug-induced ER stress. Taken together, these data indicate that 6-TG and 6-TGo are effective host-targeted antivirals that trigger the UPR and selectively disrupt accumulation of viral glycoproteins.IMPORTANCESecreted and transmembrane proteins are synthesized in the endoplasmic reticulum (ER), where they are folded and modified prior to transport. Many viruses rely on the ER for the synthesis and processing of viral glycoproteins that will ultimately be incorporated into viral envelopes. Viral burden on the ER can trigger the unfolded protein response (UPR). Much remains to be learned about how viruses co-opt the UPR to ensure efficient synthesis of viral glycoproteins. Here, we show that two FDA-approved thiopurine drugs, 6-TG and 6-TGo, induce the UPR, which represents a previously unrecognized effect of these drugs on cell physiology. This thiopurine-mediated UPR activation blocks influenza virus replication by impeding viral glycoprotein accumulation. Our findings suggest that 6-TG and 6-TGo may have broad antiviral effect against enveloped viruses that require precise tuning of the UPR to support viral glycoprotein synthesis.
    DOI:  https://doi.org/10.1128/JVI.00453-21
  3. FEMS Microbiol Rev. 2021 Mar 25. pii: fuab016. [Epub ahead of print]
      Viruses elicit cell and organismic stress, and offset homeostasis. They trigger intrinsic, innate and adaptive immune responses, which limit infection. Viruses restore homeostasis by harnessing evolutionary conserved stress responses, such as the endoplasmic reticulum (ER) unfolded protein response (UPRER). The canonical UPRER restores homeostasis based on a cell-autonomous signalling network modulating transcriptional and translational output. The UPRER remedies cell damage, but upon severe and chronic stress leads to cell death. Signals from the UPRER flow along three branches with distinct stress sensors, the inositol requiring enzyme (Ire) 1, protein kinase R (PKR)-like ER kinase (PERK), and the activating transcription factor 6 (ATF6). This review shows how both enveloped and non-enveloped viruses use the UPRER to control cell stress and metabolic pathways, and thereby enhance infection and progeny formation, or undergo cell death. We highlight how the Ire1 axis bypasses apoptosis, boosts viral transcription and maintains dormant viral genomes during latency and persistence periods concurrent with long term survival of infected cells. These considerations open new options for oncolytic virus therapies against cancer cells where the UPRER is frequently upregulated. We conclude with a discussion of the evolutionary impact that viruses, in particular retroviruses, and anti-viral defense has on the UPRER.
    Keywords:  Endoplasmic reticulum unfolded protein response; cell death; evolution; homeostasis; stress response; virus-induced cell stress
    DOI:  https://doi.org/10.1093/femsre/fuab016
  4. Dev Cell. 2021 Mar 19. pii: S1534-5807(21)00202-1. [Epub ahead of print]
      ER-phagy, literally endoplasmic reticulum (ER)-eating, defines the constitutive or regulated clearance of ER portions within metazoan endolysosomes or yeast and plant vacuoles. The advent of electron microscopy led to the first observations of ER-phagy over 60 years ago, but only recently, with the discovery of a set of regulatory proteins named ER-phagy receptors, has it been dissected mechanistically. ER-phagy receptors are activated by a variety of pleiotropic and ER-centric stimuli. They promote ER fragmentation and engage luminal, membrane-bound, and cytosolic factors, eventually driving lysosomal clearance of select ER domains along with their content. After short historical notes, this review introduces the concept of ER-phagy responses (ERPRs). ERPRs ensure lysosomal clearance of ER portions expendable during nutrient shortage, nonfunctional, present in excess, or containing misfolded proteins. They cooperate with unfolded protein responses (UPRs) and with ER-associated degradation (ERAD) in determining ER size, function, and homeostasis.
    Keywords:  ER-associated degradation (ERAD); ER-phagy; ER-phagy response (ERPR); ER-to-lysosome-associated; autophagosome; autophagy; degradation (ERLAD); endolysosome; lysosome; recov-ER-phagy; unfolded proteins response (UPR); vacuole
    DOI:  https://doi.org/10.1016/j.devcel.2021.03.005
  5. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2008772118. [Epub ahead of print]118(13):
      Most glioblastomas (GBMs) achieve cellular immortality by acquiring a mutation in the telomerase reverse transcriptase (TERT) promoter. TERT promoter mutations create a binding site for a GA binding protein (GABP) transcription factor complex, whose assembly at the promoter is associated with TERT reactivation and telomere maintenance. Here, we demonstrate increased binding of a specific GABPB1L-isoform-containing complex to the mutant TERT promoter. Furthermore, we find that TERT promoter mutant GBM cells, unlike wild-type cells, exhibit a critical near-term dependence on GABPB1L for proliferation, notably also posttumor establishment in vivo. Up-regulation of the protein paralogue GABPB2, which is normally expressed at very low levels, can rescue this dependence. More importantly, when combined with frontline temozolomide (TMZ) chemotherapy, inducible GABPB1L knockdown and the associated TERT reduction led to an impaired DNA damage response that resulted in profoundly reduced growth of intracranial GBM tumors. Together, these findings provide insights into the mechanism of cancer-specific TERT regulation, uncover rapid effects of GABPB1L-mediated TERT suppression in GBM maintenance, and establish GABPB1L inhibition in combination with chemotherapy as a therapeutic strategy for TERT promoter mutant GBM.
    Keywords:  CRISPR; TERT; cancer; glioblastoma; temozolomide
    DOI:  https://doi.org/10.1073/pnas.2008772118
  6. Ageing Res Rev. 2021 Mar 17. pii: S1568-1637(21)00067-2. [Epub ahead of print] 101320
      Telomeres are protective structures, composed of nucleic acids and a complex protein mixture, located at the end of the chromosomes. They play an important role in preventing genomic instability and ensuring cell health. Defects in telomere integrity result in cell dysfunction and the development of diseases, including neurodegenerative disorders, cancer and premature aging syndromes, among others. Loss of telomere integrity during normal cell aging also initiates DNA damage signals that culminate in the senescence phenotype. Fluorescence microscopy has allowed researchers to study the dynamics, shape, localization, and co-distribution of telomeres with proteins of interest. The microscopy tools to investigate these structures have evolved, making it possible to understand in greater detail the molecular mechanisms affecting telomeres that contribute to cell aging and the development of age-related diseases. Using human fibroblasts as an example, we will highlight several characteristics of telomeres that can be investigated using three different microscopy systems, including wide-field microscopy, and the two super-resolution techniques called 3D Structured Illumination Microscopy (3D-SIM) and direct Stochastic Optical Reconstruction Microscopy (dSTORM). In this review, we will also discuss their limitations and highlight their importance in answering telomere-related scientific questions.
    Keywords:  fluorescence microscopy; senescence; super-resolution microscopy; telomere biology
    DOI:  https://doi.org/10.1016/j.arr.2021.101320
  7. Cell Death Dis. 2021 Mar 22. 12(4): 304
      While germline recessive loss-of-function mutations in SEC23B in humans cause a rare form of anaemia, heterozygous change-of-function mutations result in increased predisposition to cancer. SEC23B encodes SEC23 homologue B, a component of coat protein complex II (COPII), which canonically transports proteins from the endoplasmic reticulum (ER) to the Golgi. Despite the association of SEC23B with anaemia and cancer, the precise pathophysiology of these phenotypic outcomes remains unknown. Recently, we reported that mutant SEC23B has non-canonical COPII-independent function, particularly within the ER stress and ribosome biogenesis pathways, and that may contribute to the pathobiology of cancer predisposition. In this study, we hypothesized that wild-type SEC23B has a baseline function within such cellular stress response pathways, with the mutant protein reflecting exaggerated effects. Here, we show that the wild-type SEC23B protein localizes to the nucleus in addition to classical distribution at the ER/Golgi interface and identify multiple putative nuclear localization and export signals regulating nuclear-cytoplasmic transport. Unexpectedly, we show that, independently of COPII, wild-type SEC23B can also localize to cell nucleoli under proteasome inhibition conditions, with distinct distribution patterns compared to mutant cells. Unbiased proteomic analyses through mass spectrometry further revealed that wild-type SEC23B interacts with a subset of nuclear proteins, in addition to central proteins in the ER stress, protein ubiquitination, and EIF2 signalling pathways. We validate the genotype-specific differential SEC23B-UBA52 (ribosomal protein RPL40) interaction. Finally, utilizing patient-derived lymphoblastoid cell lines harbouring either wild-type or mutant SEC23B, we show that SEC23B levels increase in response to ER stress, further corroborating its role as a cellular stress response sensor and/or effector. Overall, these observations suggest that SEC23B, irrespective of mutation status, has unexplored roles in the cellular stress response pathway, with implications relevant to cancer and beyond that, CDAII and normal cell biology.
    DOI:  https://doi.org/10.1038/s41419-021-03589-9
  8. J Biol Chem. 2021 Mar 18. pii: S0021-9258(21)00342-2. [Epub ahead of print] 100564
      The phosphatase cell division cycle 25B (Cdc25B) regulates cell cycle progression. Increased Cdc25B levels are often detected in cancer cell lines and human cancers, and have been implicated in contributing to tumor growth, potentially by providing cancer cells with the ability to bypass checkpoint controls. However, the specific mechanism by which increased Cdc25B impacts tumor progression is not clear. Here we analyzed The Cancer Genome Atlas (TCGA) database and found that patients with high CDC25B expression had the expected poor survival. However, we also found that high CDC25B expression had a p53-dependent tumor suppressive effect in lung cancer and possibly several other cancer types. Looking in more detail at the tumor suppressive function of Cdc25B, we found that increased Cdc25B expression caused inhibition of cell growth in human normal fibroblasts. This effect was not due to alteration of specific cell cycle stage or inhibition of apoptosis, nor by induction of the DNA damage response. Instead, increased CDC25B expression led cells into senescence. We also found that p53 was required to induce senescence, which might explain the p53-dependent tumor suppressive function of Cdc25B. Mechanistically, we found the Cdc25B phosphatase activity was required to induce senescence. Further analysis also found that Cdc25B stabilized p53 through binding and dephosphorylating p53. Together, this study identified a tumor-suppressive function of Cdc25B that is mediated through a p53-dependent senescence pathway.
    Keywords:  CDC25B; p53; phosphatase; senescence; tumor suppression
    DOI:  https://doi.org/10.1016/j.jbc.2021.100564
  9. Nature. 2021 Mar 24.
      Mutated isocitrate dehydrogenase 1 (IDH1) defines a molecularly distinct subtype of diffuse glioma1-3. The most common IDH1 mutation in gliomas affects codon 132 and encodes IDH1(R132H), which harbours a shared clonal neoepitope that is presented on major histocompatibility complex (MHC) class II4,5. An IDH1(R132H)-specific peptide vaccine (IDH1-vac) induces specific therapeutic T helper cell responses that are effective against IDH1(R132H)+ tumours in syngeneic MHC-humanized mice4,6-8. Here we describe a multicentre, single-arm, open-label, first-in-humans phase I trial that we carried out in 33 patients with newly diagnosed World Health Organization grade 3 and 4 IDH1(R132H)+ astrocytomas (Neurooncology Working Group of the German Cancer Society trial 16 (NOA16), ClinicalTrials.gov identifier NCT02454634). The trial met its primary safety endpoint, with vaccine-related adverse events restricted to grade 1. Vaccine-induced immune responses were observed in 93.3% of patients across multiple MHC alleles. Three-year progression-free and death-free rates were 0.63 and 0.84, respectively. Patients with immune responses showed a two-year progression-free rate of 0.82. Two patients without an immune response showed tumour progression within two years of first diagnosis. A mutation-specificity score that incorporates the duration and level of vaccine-induced IDH1(R132H)-specific T cell responses was associated with intratumoral presentation of the IDH1(R132H) neoantigen in pre-treatment tumour tissue. There was a high frequency of pseudoprogression, which indicates intratumoral inflammatory reactions. Pseudoprogression was associated with increased vaccine-induced peripheral T cell responses. Combined single-cell RNA and T cell receptor sequencing showed that tumour-infiltrating CD40LG+ and CXCL13+ T helper cell clusters in a patient with pseudoprogression were dominated by a single IDH1(R132H)-reactive T cell receptor.
    DOI:  https://doi.org/10.1038/s41586-021-03363-z
  10. Cell Biosci. 2021 Mar 20. 11(1): 57
      INTRODUCTION: Ewing's sarcoma is an aggressive childhood malignancy whose outcome has not substantially improved over the last two decades. In this study, combination treatments of the HSP90 inhibitor AUY922 with either the ATR inhibitor VE821 or the ATM inhibitor KU55933 were investigated for their effectiveness in Ewing's sarcoma cells.METHODS: Effects were determined in p53 wild-type and p53 null Ewing's sarcoma cell lines by flow cytometric analyses of cell death, mitochondrial depolarization and cell-cycle distribution as well as fluorescence and transmission electron microscopy. They were molecularly characterized by gene and protein expression profiling, and by quantitative whole proteome analysis.
    RESULTS: AUY922 alone induced DNA damage, apoptosis and ER stress, while reducing the abundance of DNA repair proteins. The combination of AUY922 with VE821 led to strong apoptosis induction independent of the cellular p53 status, yet based on different molecular mechanisms. p53 wild-type cells activated pro-apoptotic gene transcription and underwent mitochondria-mediated apoptosis, while p53 null cells accumulated higher levels of DNA damage, ER stress and autophagy, eventually leading to apoptosis. Impaired PI3K/AKT/mTOR signaling further contributed to the antineoplastic combination effects of AUY922 and VE821. In contrast, the combination of AUY922 with KU55933 did not produce a cooperative effect.
    CONCLUSION: Our study reveals that HSP90 and ATR inhibitor combination treatment may be an effective therapeutic approach for Ewing's sarcoma irrespective of the p53 status.
    Keywords:  ATM; ATR; Apoptosis; Endoplasmic reticulum (ER) stress; Ewing's sarcoma; HSP90
    DOI:  https://doi.org/10.1186/s13578-021-00571-y
  11. Front Cell Dev Biol. 2021 ;9 637084
      Proteome damage plays a major role in aging and age-related neurodegenerative diseases. Under healthy conditions, molecular quality control mechanisms prevent toxic protein misfolding and aggregation. These mechanisms include molecular chaperones for protein folding, spatial compartmentalization for sequestration, and degradation pathways for the removal of harmful proteins. These mechanisms decline with age, resulting in the accumulation of aggregation-prone proteins that are harmful to cells. In the past decades, a variety of fast- and slow-aging model organisms have been used to investigate the biological mechanisms that accelerate or prevent such protein toxicity. In this review, we describe the most important mechanisms that are required for maintaining a healthy proteome. We describe how these mechanisms decline during aging and lead to toxic protein misassembly, aggregation, and amyloid formation. In addition, we discuss how optimized protein homeostasis mechanisms in long-living animals contribute to prolonging their lifespan. This knowledge might help us to develop interventions in the protein homeostasis network that delay aging and age-related pathologies.
    Keywords:  aggregation; aging; amyloid; phase separation; protein homeostasis; protein quality control
    DOI:  https://doi.org/10.3389/fcell.2021.637084
  12. Proc Natl Acad Sci U S A. 2021 Mar 30. pii: e2020150118. [Epub ahead of print]118(13):
      High levels of the intermediate filament protein keratin 17 (K17) are associated with poor prognoses for several human carcinomas. Studies in mouse models have shown that K17 expression is positively associated with growth, survival, and inflammation in skin and that lack of K17 delays onset of tumorigenesis. K17 occurs in the nucleus of human and mouse tumor keratinocytes where it impacts chromatin architecture, gene expression, and cell proliferation. We report here that K17 is induced following DNA damage and promotes keratinocyte survival. The presence of nuclear K17 is required at an early stage of the double-stranded break (DSB) arm of the DNA damage and repair (DDR) cascade, consistent with its ability to associate with key DDR effectors, including γ-H2A.X, 53BP1, and DNA-PKcs. Mice lacking K17 or with attenuated K17 nuclear import showed curtailed initiation in a two-step skin carcinogenesis paradigm. The impact of nuclear-localized K17 on DDR and cell survival provides a basis for the link between K17 induction and poor clinical outcomes for several human carcinomas.
    Keywords:  DNA damage; intermediate filament; keratin; skin; tumor
    DOI:  https://doi.org/10.1073/pnas.2020150118
  13. Mol Biol Rep. 2021 Mar 25.
      Poly (ADP-ribose) polymerases (PARPs) constitute a family of enzymes associated with divergent cellular processes that are not limited to DNA repair, chromatin organization, genome integrity, and apoptosis but also found to play a crucial role in inflammation. PARPs mediate poly (ADP-ribosylation) of DNA binding proteins that is often responsible for chromatin remodeling thereby ensure effective repairing of DNA stand breaks although during the conditions of severe genotoxic stress PARPs direct the cell fate towards apoptotic events. Recent discoveries have pushed PARPs into the spotlight as targets for treating cancer, metabolic, inflammatory and neurological disorders. Of note, PARP-1 is the most abundant isoform of PARPs (18 member super family) which executes more than 90% of PARPs functions. Since oxidative/nitrosative stress actuated PARP-1 is linked to vigorous DNA damage and wide spread provocative inflammatory response that underlie the aetiopathogenesis of different neurological disorders, possibility of developing PARP-1 inhibitors as plausible neurotherapeutic agents attracts considerable research interest. This review outlines the recent advances in PARP-1 biology and examines the capability of PARP-1 inhibitors as treatment modalities in intense and interminable diseases of neuronal origin.
    Keywords:  Neuroinflammation; Neurological disorders; PARP-1; PARP1 inhibitors
    DOI:  https://doi.org/10.1007/s11033-021-06285-1
  14. Cell Rep. 2021 Mar 23. pii: S2211-1247(21)00190-X. [Epub ahead of print]34(12): 108876
      ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment.
    Keywords:  FAK; allosteric effects; anchorage-dependent signaling; c-Src; drug resistance; kinase inhibitor; paradoxical activation
    DOI:  https://doi.org/10.1016/j.celrep.2021.108876
  15. Nat Cancer. 2021 Mar;2(3): 312-326
      Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).
    DOI:  https://doi.org/10.1038/s43018-020-00171-8
  16. Acta Neuropathol Commun. 2021 Mar 24. 9(1): 52
      Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative disease in which 97% of patients exhibit cytoplasmic aggregates containing the RNA binding protein TDP-43. Using tagged ribosome affinity purifications in Drosophila models of TDP-43 proteinopathy, we identified TDP-43 dependent translational alterations in motor neurons impacting the spliceosome, pentose phosphate and oxidative phosphorylation pathways. A subset of the mRNAs with altered ribosome association are also enriched in TDP-43 complexes suggesting that they may be direct targets. Among these, dlp mRNA, which encodes the glypican Dally like protein (Dlp)/GPC6, a wingless (Wg/Wnt) signaling regulator is insolubilized both in flies and patient tissues with TDP-43 pathology. While Dlp/GPC6 forms puncta in the Drosophila neuropil and ALS spinal cords, it is reduced at the neuromuscular synapse in flies suggesting compartment specific effects of TDP-43 proteinopathy. These findings together with genetic interaction data show that Dlp/GPC6 is a novel, physiologically relevant target of TDP-43 proteinopathy.
    Keywords:  ALS; Drosophila; Glypican; Motor neuron; Neuromuscular junction; TDP-43; Translation; Wnt signaling
    DOI:  https://doi.org/10.1186/s40478-021-01148-z
  17. Int J Mol Med. 2021 May;pii: 81. [Epub ahead of print]47(5):
      Endoplasmic reticulum (ER) stress is an important reaction of airway epithelial cells in response to various stimuli, and may also be involved in the mucin secretion process. In the present study, the effect of ER stress on neutrophil elastase (NE)‑induced mucin (MUC)5AC production in human airway epithelial cells was explored. 16HBE14o‑airway epithelial cells were cultured and pre‑treated with the reactive oxygen species (ROS) inhibitor, N‑acetylcysteine (NAC), or the ER stress chemical inhibitor, 4‑phenylbutyric acid (4‑PBA), or the cells were transfected with inositol‑requiring kinase 1α (IRE1α) small interfering RNA (siRNA) or X‑box‑binding protein 1 (XBP1) siRNA, respectively, and subsequently incubated with NE. The results obtained revealed that NE increased ROS production in the 16HBE14o‑cells, with marked increases in the levels of ER stress‑associated proteins, such as glucose‑regulated protein 78 (GRP78), activating transcription factor 6 (ATF6), phosphorylated protein kinase R‑like endoplasmic reticulum kinase (pPERK) and phosphorylated (p)IRE1α. The protein and mRNA levels of spliced XBP1 were also increased, and the level of MUC5AC protein was notably increased. The ROS scavenger NAC and ER stress inhibitor 4‑PBA were found to reduce ER stress‑associated protein expression and MUC5AC production and secretion. Further analyses revealed that MUC5AC secretion was also attenuated by IRE1α and XBP1 siRNAs, accompanied by a decreased mRNA expression of spliced XBP1. Taken together, these results demonstrate that NE induces ER stress by promoting ROS production in 16HBE14o‑airway epithelial cells, leading to increases in MUC5AC protein production and secretion via the IRE1α and XBP1 signaling pathways.
    DOI:  https://doi.org/10.3892/ijmm.2021.4914
  18. Nature. 2021 Mar;591(7851): 501-502
      
    Keywords:  Careers; History; Lab life
    DOI:  https://doi.org/10.1038/d41586-021-00770-0
  19. Methods. 2021 Mar 19. pii: S1046-2023(21)00077-3. [Epub ahead of print]
      Recently, a large number of circular RNAs (circRNAs) were discovered in eukaryotes, some of which were reported to be translated through a cap-independent fashion. However, study of circRNA translation is still not trivial. Here we describe two distinct systems to generate the translatable circRNAs containing validated open reading frames (ORF) to analyze their translation in living cells. The first system is a plasmid reporter containing a single exon with split GFP fragments in reverse order, which can be efficiently back-spliced to generate a circRNA encoding intact GFP. The second system is a self-splicing reporter containing an intact Renilla luciferase (Rluc) ORF and the flanking split group I introns in reverse order, which can produce circRNAs through in vitro self-splicing of the precursor RNAs. Both circRNA systems can serve as the platforms for mechanistic studies of circRNA translation, and also serve as the reliable systems to measure the activity of IRES-mediated translation.
    Keywords:  Back-splicing; Cap-independent Translation; Circular RNA; Internal ribosomal entry sites; Self-splicing
    DOI:  https://doi.org/10.1016/j.ymeth.2021.03.011
  20. Cell Cycle. 2021 Mar 25. 1-16
      The tumor suppressor protein p53 is a DNA-binding transcription factor (TF) that, once activated, coordinates the expression of thousands of target genes. Increased p53 binding to gene promoters occurs shortly after p53 activation. Intriguingly, gene transcription exhibits differential kinetics with some genes being induced early (early genes) and others being induced late (late genes). To understand pre-binding factors contributing to the temporal gene regulation by p53, we performed time-course RNA sequencing experiments in human colon cancer cell line HCT116 treated with fluorouracil to identify early and late genes. Published p53 ChIP fragments co-localized with the early or late genes were used to uncover p53 binding sites (BS). We demonstrate that the BS associated with early genes are clustered around gene starts with decreased nucleosome occupancy. DNA analysis shows that these BS are likely exposed on nucleosomal surface if wrapped into nucleosomes, thereby facilitating stable interactions with and fast induction by p53. By contrast, p53 BS associated with late genes are distributed uniformly across the genes with increased nucleosome occupancy. Predicted rotational settings of these BS show limited accessibility. We therefore propose a hypothetical model in which the BS are fully, partially or not accessible to p53 in the nucleosomal context. The partial accessibility of the BS allows subunits of a p53 tetramer to bind, but the resulting p53-DNA complex may not be stable enough to recruit cofactors, which leads to delayed induction. Our work highlights the importance of DNA conformations of p53 BS in gene expression dynamics.
    Keywords:  P53; binding sites; nucleosomes; temporal gene regulation
    DOI:  https://doi.org/10.1080/15384101.2021.1904554
  21. Front Med (Lausanne). 2021 ;8 649896
      Cancer is one of the most leading causes of mortalities worldwide. It is caused by the accumulation of genetic and epigenetic alterations in 2 types of genes: tumor suppressor genes (TSGs) and proto-oncogenes. In recent years, development of the clustered regularly interspaced short palindromic repeats (CRISPR) technology has revolutionized genome engineering for different cancer research ranging for research ranging from fundamental science to translational medicine and precise cancer treatment. The CRISPR/CRISPR associated proteins (CRISPR/Cas) are prokaryote-derived genome editing systems that have enabled researchers to detect, image, manipulate and annotate specific DNA and RNA sequences in various types of living cells. The CRISPR/Cas systems have significant contributions to discovery of proto-oncogenes and TSGs, tumor cell epigenome normalization, targeted delivery, identification of drug resistance mechanisms, development of high-throughput genetic screening, tumor models establishment, and cancer immunotherapy and gene therapy in clinics. Robust technical improvements in CRISPR/Cas systems have shown a considerable degree of efficacy, specificity, and flexibility to target the specific locus in the genome for the desired applications. Recent developments in CRISPRs technology offers a significant hope of medical cure against cancer and other deadly diseases. Despite significant improvements in this field, several technical challenges need to be addressed, such as off-target activity, insufficient indel or low homology-directed repair (HDR) efficiency, in vivo delivery of the Cas system components, and immune responses. This study aims to overview the recent technological advancements, preclinical and perspectives on clinical applications of CRISPR along with their advantages and limitations. Moreover, the potential applications of CRISPR/Cas in precise cancer tumor research, genetic, and other precise cancer treatments discussed.
    Keywords:  CRiSPR/Cas; cancer; clustered regularly interspaced short palindromic repeats; diagnosis; genetic editing; precise cancer treatment; precision medicine
    DOI:  https://doi.org/10.3389/fmed.2021.649896
  22. Cancer Gene Ther. 2021 Mar 22.
      In spite of significant recent advances in our understanding of the genetics and cell biology of glioblastoma, to date, this has not led to improved treatments for this cancer. In addition to small molecule, antibody, and engineered virus approaches, engineered cells are also being explored as glioblastoma therapeutics. This includes CAR-T cells, CAR-NK cells, as well as engineered neural stem cells and mesenchymal stem cells. Here we review the state of this field, starting with clinical trial studies. These have established the feasibility and safety of engineered cell therapies for glioblastoma and show some evidence for activity. Next, we review the preclinical literature and compare the strengths and weaknesses of various starting cell types for engineered cell therapies. Finally, we discuss future directions for this nascent but promising modality for glioblastoma therapy.
    DOI:  https://doi.org/10.1038/s41417-021-00320-w
  23. Cell Death Dis. 2021 Mar 24. 12(4): 314
      Chemotherapeutic agents have been linked to immunogenic cell death (ICD) induction that is capable of augmenting anti-tumor immune surveillance. The cardiac glycoside oleandrin, which inhibits Na+/K+-ATPase pump (NKP), has been shown to suppress breast cancer growth via inducing apoptosis. In the present study, we showed that oleandrin treatment triggered breast cancer cell ICD by inducing calreticulin (CRT) exposure on cell surface and the release of high-mobility group protein B1 (HMGB1), heat shock protein 70/90 (HSP70/90), and adenosine triphosphate (ATP). The maturation and activation of dendritic cells (DCs) were increased by co-culturing with the oleandrin-treated cancer cells, which subsequently enhanced CD8+ T cell cytotoxicity. Murine breast cancer cell line EMT6 was engrafted into BALB/c mice, and tumor-bearing mice were administered with oleandrin intraperitoneally every day. Oleandrin inhibited tumor growth and increased tumor infiltrating lymphocytes including DCs and T cells. Furthermore, the differential mRNA expression incurred by oleandrin was investigated by mRNA sequencing and subsequently confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Mechanistically, oleandrin induced endoplasmic reticulum (ER) stress-associated, caspase-independent ICD mainly through PERK/elF2α/ATF4/CHOP pathway. Pharmacological and genetic inhibition of protein kinase R-like ER kinase (PERK) suppressed oleandrin-triggered ICD. Taken together, our findings showed that oleandrin triggered ER stress and induced ICD-mediated immune destruction of breast cancer cells. Oleandrin combined with immune checkpoint inhibitors might improve the efficacy of immunotherapy.
    DOI:  https://doi.org/10.1038/s41419-021-03605-y