Micromachines (Basel). 2025 May 29. pii: 654. [Epub ahead of print]16(6):
Glioblastoma (GBM, isocitrate dehydrogenase wild-type) is the most common primary malignant brain tumor in adults and is associated with a severely low survival rate. Treatments offer mere palliation and are ineffective, due, in part, to a lack of understanding of the intricate mechanisms underlying the disease, including the contribution of the tumor microenvironment (TME). Current GBM models continue to face challenges as they lack the critical components and properties required. To address this limitation, we developed innovative and practical three-dimensional (3D) GBM models with structural and mechanical biomimicry and tunability. These models allowed for more accurate emulation of the extracellular matrix (ECM) and vasculature characteristics of the native GBM TME. Additionally, 3D bioprinting was utilized to integrate these complexities, employing a hydrogel composite to mimic the native environment that is known to contribute to tumor cell growth. First, we examined the changes in physical properties that resulted from adjoining hydrogels at diverse concentrations using Fourier-Transform Infrared Spectroscopy (FTIR), compression testing, scanning electron microscopy (SEM), rheological analysis, and degradation analysis. Subsequently, we refined and optimized the embedded bioprinting processes. The resulting 3D GBM models were structurally reliable and reproducible, featuring integrated inner channels and possessing tunable properties to emulate the characteristics of the GBM ECM. Biocompatibility testing was performed via live/dead and AlamarBlue analyses using GBM cells (both commercial cell lines and patient-derived cell lines) encapsulated in the constructs, along with immunohistochemistry staining to understand how ECM properties altered the functions of GBM cells. The observed behavior of GBM cells indicated greater functionality in softer matrices, while the incorporation of hyaluronic acid (HA) into the gelatin methacryloyl (gelMA) matrix enhanced its biomimicry of the native GBM TME. The findings underscore the critical role of TME components, particularly ECM properties, in influencing GBM survival, proliferation, and molecular expression, laying the groundwork for further mechanistic studies. Additionally, the outcomes validate the potential of leveraging 3D bioprinting for GBM modeling, providing a fully controllable environment to explore specific pathways and therapeutic targets that are challenging to study in conventional model systems.
Keywords: 3D bioprinting; GBM modeling; extracellular matrix; glioblastoma; hydrogels; tumor microenvironment