bims-enlima Biomed News
on Engineered living materials
Issue of 2025–03–23
35 papers selected by
Rahul Kumar, Tallinna Tehnikaülikool



  1. Langmuir. 2025 Mar 19.
      Numerous metabolic processes in nature are governed by extrinsic stimuli such as light and pH variations, which afford opportunities for synthetic and biological applications. In developing a multisensor apparatus, we have integrated submicrometer purple membrane patches, each harboring bacteriorhodopsin, onto a surface. Bacteriorhodopsin is a light-driven proton pump. We conducted monitoring of the interactions between this system and a pH-responsive supramolecular hydrogel to evaluate fibrous matrix growth. Initial photostimulation induced localized reductions in pH at the membrane surface, thereby catalyzing fibrogenesis within the hydrogel. Utilizing liquid atomic force microscopy alongside confocal laser scanning microscopy, we observed the hydrogel's morphogenesis and structural adaptations in real time. The system adeptly modulated microscale pH environments, fostering targeted fibrous development within the hydrogel matrix. This elucidates the potential for engineering responsive materials that emulate natural bioprocesses.
    DOI:  https://doi.org/10.1021/acs.langmuir.4c04581
  2. ACS Synth Biol. 2025 Mar 17.
      Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.
    Keywords:  Saccharomyces cerevisiae; genetically encoded inhibitor; metabolic engineering; nanobody; optogenetics; post-translational control; synthetic biology
    DOI:  https://doi.org/10.1021/acssynbio.4c00617
  3. Nature. 2025 Mar 17.
      
    Keywords:  Chemical biology; Engineering; Technology
    DOI:  https://doi.org/10.1038/d41586-025-00819-4
  4. Sci Adv. 2025 Mar 21. 11(12): eads4415
      Conductive hydrogels are emerging as promising materials for electronic implants owing to their favorable mechanical and electrical properties. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels are particularly attractive, but their preparation often requires toxic additives. Here, we introduced a nutritive sweetener, d-sorbitol, as a nontoxic additive to create soft and stretchable PEDOT:PSS conductive hydrogels. These hydrogels exhibit mechanical properties comparable with biological tissues, reducing adverse immune responses. The hydrogels can be patterned on elastic substrates using a simple, low-cost micromolding technique to fabricate soft and stretchable implantable devices for electrical stimulation and recording. The hydrogel electrodes show much lower electrochemical impedance and higher charge storage and injection capacity compared to platinum electrodes. In addition, the properties of hydrogels and devices remain stable after long-term storage and exposure to extreme conditions. We demonstrate the use of soft hydrogel-based electronic devices for effective electrical stimulation and high-quality electrical recordings in live animal models.
    DOI:  https://doi.org/10.1126/sciadv.ads4415
  5. ACS Nano. 2025 Mar 18.
      Separation is a fundamental process in natural living systems. Their separation capabilities have inspired the design of various separation materials and devices. Despite some progress having been made, a comprehensive overview is still lacking. In this Perspective, we first review the development of separation technologies. We then summarize some typical living systems exhibiting superior separation capabilities from compositions and microstructures to separation mechanisms. Next, we highlight key advancements in nature-inspired separation materials and integrated devices. Finally, we propose future research directions and opportunities, emphasizing the importance of physical and chemical design and internal and external stimulus regulation. These nature-inspired materials and devices show great potential in biomedicine, environmental remediation, energy conversion, food safety, and analysis testing.
    Keywords:  composition; device; living system; mechanism; microstructure; nature-inspired; separation; stimuli-responsive
    DOI:  https://doi.org/10.1021/acsnano.4c17912
  6. ACS Nano. 2025 Mar 18.
      Sustainable development represents a significant and pressing challenge confronting the global community at present. A wide variety of macroscopic engineering systems has been developed to promote sustainable development. Recent advancements in DNA materials have showcased their substantial contributions toward achieving sustainable development goals (SDGs). Compared to nonbiological materials, DNA materials possess exceptional properties such as genetic functionality, molecular programmability, recognition capabilities, and biocompatibility. These unique characteristics enable DNA materials to serve as general and versatile substrates beyond their genetic role. Consequently, they can be used to develop DNA-based engineering systems that offer versatile solutions to support sustainable development. In this Perspective, we critically examine the opportunities that DNA-based engineering systems present in contributing to the achievement of the SDGs within various real-world scenarios. We establish direct relationships between DNA-based engineering systems and the SDGs, highlighting their inherent merits in accelerating sustainable development. Furthermore, in order to successfully achieve SDGs, we address the challenges associated with these systems and emphasize the urgent need for developing multifunctional, reliable, biosafe, and intelligent DNA-based engineering systems to overcome these challenges.
    Keywords:  DNA materials; DNA nanostructures; biotechnology; nanomaterials; sustainability
    DOI:  https://doi.org/10.1021/acsnano.4c17718
  7. Nat Chem Biol. 2025 Mar 17.
      Reconstructing the biosynthesis of complex natural products such as lignans in yeast is challenging and can result in metabolic promiscuity, affecting the biosynthetic efficiency. Here we divide the lignan biosynthetic pathway across a synthetic yeast consortium with obligated mutualism and use ferulic acid as a metabolic bridge. This cooperative system successfully overcomes the metabolic promiscuity and synthesizes the common precursor, coniferyl alcohol. Furthermore, combined with systematic engineering strategies, we achieve the de novo synthesis of key lignan skeletons, pinoresinol and lariciresinol, and verify the scalability of the consortium by synthesizing complex lignans, including antiviral lariciresinol diglucoside. These results provide a starting engineering platform for the heterologous synthesis of lignans. In particular, the study illustrates that the yeast consortium with obligate mutualism is a promising strategy that mimics the metabolic division of labor among multiple plant cells, thereby improving the biosynthesis of long pathways and complex natural products.
    DOI:  https://doi.org/10.1038/s41589-025-01861-z
  8. ACS Synth Biol. 2025 Mar 21.
      Integral feedback control strategies have proven effective in regulating protein expression in unpredictable cellular environments. These strategies, grounded in model-based designs and control theory, have advanced synthetic biology applications. Autocatalytic integral feedback controllers, utilizing positive autoregulation for integral action, are one class of simplest architectures to design integrators. This class of controllers offers unique features, such as robustness against dilution effects and cellular growth, as well as the potential for synthetic realizations across different biological scales, owing to their similarity to self-regenerative behaviors widely observed in nature. Despite this, their potential has not yet been fully exploited. One key reason, we discuss, is that their effectiveness is often hindered by resource competition and context-dependent couplings. This study addresses these challenges using a multilayer feedback strategy. Our designs enabled population-level integral feedback and multicellular integrators, where the control function emerges as a property of coordinated interactions distributed across different cell populations coexisting in a multicellular consortium. We provide a generalized mathematical framework for modeling resource competition in complex genetic networks, supporting the design of intracellular control circuits. The use of our proposed multilayer autocatalytic controllers is examined in two typical control tasks that pose significant relevance to synthetic biology applications: concentration regulation and ratiometric control. We define a ratiometric control task and solve it using a variant of our controller. The effectiveness of our controller motifs is demonstrated through a range of application examples, from precise regulation of gene expression and gene ratios in embedded designs to population growth and coculture composition control in multicellular designs within engineered microbial ecosystems. These findings offer a versatile approach to achieving robust adaptation and homeostasis from subcellular to multicellular scales.
    Keywords:  biological feedback systems; coculture composition regulation; multicellular computing; ratiometric control; resource-aware modeling; robust perfect adaptation
    DOI:  https://doi.org/10.1021/acssynbio.4c00575
  9. Nat Biotechnol. 2025 Mar 18.
      Gene transfer can be studied using genetically encoded reporters or metagenomic sequencing but these methods are limited by sensitivity when used to monitor the mobile DNA host range in microbial communities. To record information about gene transfer across a wastewater microbiome, a synthetic catalytic RNA was used to barcode a highly conserved segment of ribosomal RNA (rRNA). By writing information into rRNA using a ribozyme and reading out native and modified rRNA using amplicon sequencing, we find that microbial community members from 20 taxonomic orders participate in plasmid conjugation with an Escherichia coli donor strain and observe differences in 16S rRNA barcode signal across amplicon sequence variants. Multiplexed rRNA barcoding using plasmids with pBBR1 or ColE1 origins of replication reveals differences in host range. This autonomous RNA-addressable modification provides information about gene transfer without requiring translation and will enable microbiome engineering across diverse ecological settings and studies of environmental controls on gene transfer and cellular uptake of extracellular materials.
    DOI:  https://doi.org/10.1038/s41587-025-02593-0
  10. Annu Rev Biochem. 2025 Mar 19.
      The visualization and manipulation of proteins in live cells are critical for studying complex biological processes. Self-labeling proteins do so by enabling the specific and covalent attachment of synthetic probes, offering unprecedented flexibility in the chemical labeling of proteins in live cells and in vivo. By combining the excellent photophysical properties of synthetic dyes with genetic targetability, these tags provide a modular and innovative toolbox for live-cell and high-resolution fluorescence imaging. In this review, we explore the development and diverse applications of the key self-labeling protein technologies, HaloTag7, SNAP-tag, and CLIP-tag, as well as the covalent trimethoprim (TMP)-tag. We discuss recent innovations in both protein engineering and substrate design that have introduced new functionalities to enable multiplexed imaging, super-resolution microscopy, and the design of novel biosensors and recorders.
    DOI:  https://doi.org/10.1146/annurev-biochem-030222-121016
  11. Nat Commun. 2025 Mar 19. 16(1): 2621
      Our bodies continuously change their shape. Wearable devices made of hard materials, such as prosthetic limbs worn by millions of amputees every day, cannot adapt to fluctuations in the shape and volume of the body caused by daily activities, weight gain or muscle atrophy. We report a meta-material (Roliner) that is a dynamically adaptive human-machine interface for wearable devices. In this work, we focus on prosthetic limbs as the first application of Roliner. Roliner is made of silicone elastomers with embedded millifluidic channels that can be pneumatically pressurized. Roliner can reconfigure its material properties (behave like silicone or polyurethane with different shore hardness in different areas and times) and volume/shape based on the preference of the amputee in real-time, acting as a spatiotemporally adaptive meta-material. Preclinical studies of Roliner have demonstrated non-inferiority in operation and improved comfort for amputees.
    DOI:  https://doi.org/10.1038/s41467-025-57634-8
  12. Nat Commun. 2025 Mar 16. 16(1): 2589
      Ultrastrong gels possess generally ultrahigh modulus and strength yet exhibit limited stretchability owing to hardening and embrittlement accompanied by reinforcement. This dilemma is overcome here by using hyperhysteresis-mediated mechanical training that hyperhysteresis allows structural retardation to prevent the structural recovery of network after training, resulting in simply single pre-stretching training. This training strategy introduces deep eutectic solvent into polyvinyl alcohol hydrogels to achieve hyperhysteresis via hydrogen bonding nanocrystals on molecular engineering, performs single pre-stretching training to produce hierarchical nanofibrils on structural engineering, and fabricates chemically cross-linked second network to enable stretchability. The resultant eutectogels display exceptional mechanical performances with enormous fracture strength (85.2 MPa), Young's modulus (98 MPa) and work of rupture (130.6 MJ m-3), which compare favorably to those of previous gels. The presented strategy is generalizable to other solvents and polymer for engineering ultrastrong organogels, and further inspires advanced fabrication technologies for force-induced self-reinforcement materials.
    DOI:  https://doi.org/10.1038/s41467-025-57800-y
  13. ACS Synth Biol. 2025 Mar 18.
      Plasmids are an essential tool for basic research and biotechnology applications. To optimize plasmid-based circuits, it is crucial to control plasmid integrity, including the formation of plasmid multimers. Multimers are tandem repeats of entire plasmids formed by failed dimer resolution during replication. Multimers can affect the behavior of synthetic circuits, especially ones that include DNA-editing enzymes. However, occurrence of multimers is not commonly assayed. Here we survey four commonly used plasmid backbones for occurrence of multimers in cloning (JM109) and wild-type (MG1655) strains of Escherichia coli. We find that multimers occur appreciably only in MG1655, with the fraction of plasmids existing as multimers increasing with both plasmid copy number and culture passaging. In contrast, transforming multimers into JM109 can yield strains that contain no singlet plasmids. We present an MG1655 ΔrecA single-locus knockout that avoids multimer production. These results can aid synthetic biologists in improving design and reliability of plasmid-based circuits.
    Keywords:  concatemers; long-read sequencing; multimers; nanopore sequencing; plasmids; recombination
    DOI:  https://doi.org/10.1021/acssynbio.4c00508
  14. Proc Natl Acad Sci U S A. 2025 Mar 25. 122(12): e2425200122
      Thermally induced ripples are intrinsic features of nanometer-thick films, atomically thin materials, and cell membranes, significantly affecting their elastic properties. Despite decades of theoretical studies on the mechanics of suspended thermalized sheets, controversy still exists over the impact of these ripples, with conflicting predictions about whether elasticity is scale-dependent or scale-independent. Experimental progress has been hindered so far by the inability to have a platform capable of fully isolating and characterizing the effects of ripples. This knowledge gap limits the fundamental understanding of thin materials and their practical applications. Here, we show that thermal-like static ripples shape thin films into a class of metamaterials with scale-dependent, customizable elasticity. Utilizing a scalable semiconductor manufacturing process, we engineered nanometer-thick films with precisely controlled frozen random ripples, resembling snapshots of thermally fluctuating membranes. Resonant frequency measurements of rippled cantilevers reveal that random ripples effectively renormalize and enhance the average bending rigidity and sample-to-sample variations in a scale-dependent manner, consistent with recent theoretical estimations. The predictive power of the theoretical model, combined with the scalability of the fabrication process, was further exploited to create kirigami architectures with tailored bending rigidity and mechanical metamaterials with delayed buckling instability.
    Keywords:  metamaterials; resonators; rippled materials
    DOI:  https://doi.org/10.1073/pnas.2425200122
  15. Angew Chem Int Ed Engl. 2025 Mar 20. e202501232
      Organic molecular crystals are ideally placed to become next-generation piezoelectric materials due to their diverse chemistries that can be used to engineer tailor-made solid-state assemblies. Using crystal engineering principles, and techniques such as co-crystallisation, these materials can be engineered to have a wide range of electromechanical properties. For materials that have been structurally characterised by methods such as X-Ray Diffraction, computational chemistry is an effective tool to predict their electromechanical properties, allowing researchers to screen these molecular crystals and identify materials best suited to their chosen application. Here we present our database of small molecular crystals, and their Density Functional Theory (DFT) predicted electromechanical properties, CrystalDFT (https://actuatelab.ie/CrystalDFT). We highlight the broad range of electromechanical properties amongst this primary dataset, and in particular, the high number of crystals that have a naturally occurring longitudinal piezoelectric response (d11/d22/d33). This longitudinal electromechanical coupling is a prerequisite for several conventional sensing and energy harvesting applications, the presence of which is notably rare amongst the literature on biomolecular crystal piezoelectricity to date.
    Keywords:  First-principles High-throughput Screening; Organic Piezoelectric Materials; Sustainable Materials; density functional theory; energy harvesting
    DOI:  https://doi.org/10.1002/anie.202501232
  16. Trends Biotechnol. 2025 Mar 14. pii: S0167-7799(25)00077-0. [Epub ahead of print]
      Here, we describe a workshop that analyzed synthetic biology at the academia-industry interface. We discuss how research can mature into successful biotech ventures and the infrastructure to support the transfer. We conclude that 'it takes a village': all components are necessary and must collaborate to grow academic ideas into real-life technologies.
    Keywords:  STEM students; biotechnology; education; infrastructures; investors; synthetic biology
    DOI:  https://doi.org/10.1016/j.tibtech.2025.02.014
  17. Elife. 2025 Mar 21. pii: RP92525. [Epub ahead of print]13
      Bacterial biofilms are communities of bacteria usually attached to solid strata and often differentiated into complex structures. Communication across biofilms has been shown to involve chemical signaling and, more recently, electrical signaling in Gram-positive biofilms. We report for the first time, community-level synchronized membrane potential dynamics in three-dimensional Escherichia coli biofilms. Two hyperpolarization events are observed in response to light stress. The first requires mechanically sensitive ion channels (MscK, MscL, and MscS) and the second needs the Kch-potassium channel. The channels mediated both local spiking of single E. coli biofilms and long-range coordinated electrical signaling in E. coli biofilms. The electrical phenomena are explained using Hodgkin-Huxley and 3D fire-diffuse-fire agent-based models. These data demonstrate that electrical wavefronts based on potassium ions are a mechanism by which signaling occurs in Gram-negative biofilms and as such may represent a conserved mechanism for communication across biofilms.
    Keywords:  E. coli; agent based modelling; electophysiology; hodgkin-huxley; ion channels; physics of living systems; signalling
    DOI:  https://doi.org/10.7554/eLife.92525
  18. ACS Synth Biol. 2025 Mar 18.
      Effective employment of renewable carbon sources is highly demanded to develop sustainable biobased manufacturing. Here, we developed Escherichia coli strains to produce 2,3-butanediol and acetoin (collectively referred to as diols) using acetate as the sole carbon source by stepwise metabolic engineering. When tested in fed-batch experiments, the strain overexpressing the entire acetate utilization pathway was found to consume acetate at a 15% faster rate (0.78 ± 0.05 g/g/h) and to produce a 35% higher diol titer (1.16 ± 0.01 g/L) than the baseline diols-producing strain. Moreover, singularly overexpressing the genes encoding alternative acetate uptake pathways as well as alternative isoforms of genes in the malate-to-pyruvate pathway unveiled that leveraging ackA-pta and maeA is more effective in enhancing acetate consumption and diols production, compared to acs and maeB. Finally, the increased substrate consumption rate and diol production obtained in flask-based experiments were confirmed in bench-scale bioreactors operated in fed-batch mode. Consequently, the highest titer of 1.56 g/L achieved in this configuration increased by over 30% compared to the only other similar effort carried out so far.
    Keywords:  acetate valorization; diol; gas fermentation; sustainability; synthetic biology
    DOI:  https://doi.org/10.1021/acssynbio.4c00839
  19. Small. 2025 Mar 18. e2501594
      Vascularization is key to the biofabrication of large-scale tissues. Despite the progress, there remain some outstanding challenges, such as limited vessel density, difficulty in fabricating microvasculatures, and inhomogeneity of post-seeding cells. Here, a new form of bioink called microfiber-templated porogel (µFTP) bioink is introduced to engineer vasculatures down to the filament building blocks of 3D bioprinted hydrogels. The cell-laden sacrificial microfibers (diameter ranges from 50-150 µm) are embedded in the bioink to template tubular voids and deliver endothelial cells for in-situ endothelialization. The inclusion of softening hydrogel microfibers retains the desirable rheological properties of the bioink for extrusion-based bioprinting and the microfibers are well inter-contacted in the extruded filament. Such bioinks can be printed into a well-defined 3D structure with tunable tubular porosities up to 55%. Compared to the conventional bulk bioink counterpart, the µFTP bioink supports the significant growth and spread of endothelial cells either embedded in the matrix or sacrificial fibers, free of the post-cell seeding procedure. Furthermore, the bioprinted scaffolds based on µFTP bioink are seen to significantly promote the in-growth of blood vessels and native tissues in vivo. The µFTP bioink approach enables the engineering of tubular bio-interfaces within the building blocks and contributes to the in-situ endothelialization of microvasculatures, providing a versatile tool for the construction of customized vascularized tissue models.
    Keywords:  bioink; bioprinting; hydrogel; microchannels; vascularization
    DOI:  https://doi.org/10.1002/smll.202501594
  20. ACS Appl Bio Mater. 2025 Mar 19.
      Micropatterned surface substrates containing topographic cues offer the possibility of programming tissue organization as a cell template by guiding cell alignment, adhesion, and function. In this study, we developed and used a force stamp method to grow aligned micropatterns with tunable chemical properties and elasticity on the surface of hydrogels based on a force-triggered polymerization mechanism of double-network hydrogels to elucidate the underlying mechanisms by which cells sense and respond to their mechanical and chemical microenvironments. In this work, we describe the impact of aligned micropatterns on the combined effects of microstructural chemistry and mechanics on the selective adhesion, directed migration, and differentiation of myoblasts. Our investigations revealed that topographically engineered substrates with hydrophobic and elevated surface roughness significantly enhanced myoblast adhesion kinetics. Concurrently, spatially ordered architectures facilitated cytoskeletal reorganization in myocytes, establishing biomechanically favorable niches for syncytial myotube development through extracellular matrix (ECM) physical guidance. Reverse transcription PCR analysis and immunofluorescence revealed that the expression of differentiation-specific genes, myosin heavy chain, and myogenic regulatory factors Myf5 and MyoD was upregulated in muscle cells on the aligned patterned scaffolds. These results suggest that the aligned micropatterns can promote muscle cell differentiation, making them potential scaffolds for enhancing skeletal differentiation.
    Keywords:  cell differentiation; engineered surface patterns; hydrogel; mechanochemistry; microstructure; surface modification
    DOI:  https://doi.org/10.1021/acsabm.4c01991
  21. Nat Nanotechnol. 2025 Mar 17.
      Bottom-up synthetic biology seeks to engineer a cell from molecular building blocks. Using DNA nanotechnology, building blocks, such as cytoskeletons, have been reverse-engineered. However, DNA nanostructures rely on chemical synthesis and thermal annealing, and therefore synthetic cells cannot produce them from their constituents such as nucleotides. Here we introduce RNA origami cytoskeleton mimics as alternative nucleic acid-based molecular hardware for synthetic cells, which we express directly inside giant unilamellar lipid vesicles (GUVs) containing a DNA template and a polymerase, chemically fuelled by feeding nucleotides from the outside. We designed RNA origami tiles that fold upon transcription and self-assemble into micrometre-long, three-dimensional RNA origami nanotubes under isothermal conditions. We observe that sequence mutations on the DNA template lead to RNA origami nanotubes and closed-ring phenotypes. Molecular dynamics simulations show that these phenotypic transitions are governed by alterations in the stability of RNA secondary structures. In addition, we achieve cortex formation with aptamer-functionalized RNA nanotubes and show that nanotube polymerization leads to membrane deformation. Altogether, our data suggest that the expression of RNA origami-based hardware will help to explore active, evolvable and RNA-based synthetic cells.
    DOI:  https://doi.org/10.1038/s41565-025-01879-3
  22. Biomater Sci. 2025 Mar 17.
      Cardiomyocyte manufacturing from human pluripotent stem cells is limited by the variability of differentiation efficiencies, partly attributed to the widespread use of the tumor-derived substrate Matrigel. Here, we describe a screening approach to identify fully-defined synthetic PEG hydrogels that support iPSC-derived cardiac progenitor cell (iPSC-CPC) adhesion, survival, and differentiation into iPSC-derived cardiomyocytes (iPSC-CMs). Our PEG hydrogels supported superior iPSC-CM differentiation efficiency, with a 24% increase in cTnT expression, and greater reproducibility when compared to cells cultured on Matrigel. By combining our 5-level, 3-variable full factorial screening approach with multi-variate analysis, we showed that all substrate variables manipulated here (adhesion ligand type/concentration, stiffness) had a significant influence on iPSC-CPC confluency and that iPSC-CM differentiation was significantly influenced by adhesion ligands. These results highlight the benefit of synthetic, tunable cell culture substrates and multi-variate screening studies to identify substrate formulations for a targeted cell behavior.
    DOI:  https://doi.org/10.1039/d4bm01636j
  23. Nat Protoc. 2025 Mar 17.
      Quantum dots (QDs) exhibit fluorescence properties with promising prospects for biomedical applications; however, the QDs synthesized in organic solvents shows poor biocompatibility, limiting their use in biological systems. We developed an approach for synthesizing QDs in live cells by coupling a series of intracellular metabolic pathways in a precise spatial and temporal sequence. We have validated this approach in yeast (Saccharomyces cerevisiae), Staphylococcus aureus, Michigan Cancer Foundation-7 (MCF-7) and Madin-Darby canine kidney (MDCK) cells. The intracellularly synthesized QDs are inherently stable and biocompatible, making them suitable for the direct in situ labeling of cells and cell-derived vesicles. Here, we provide an optimized workflow for the live-cell synthesis of QDs by using S. cerevisiae, S. aureus or MCF-7 cells. In addition, we detail a cell-free aqueous synthetic system (quasi-biosynthesis) containing enzymes, electrolytes, peptides and coenzymes, which closely mimics the intracellular synthetic conditions used in our cell culture system. In this solution, we synthesize biocompatible ultrasmall QDs that are easier to purify and characterize than those synthesized in cells. The live-cell-synthesized QDs can be used for bioimaging and microvesicle detection, whereas the quasi-biosynthesized QDs are suitable for applications such as biodetection, biolabeling and real-time imaging. The procedure can be completed in 3-4 d for live-cell QD synthesis and 2 h for the quasi-biosynthesis of QDs. The procedure is suitable for users with expertise in chemistry, biology, materials science and synthetic biology. This approach encourages interested researchers to engage in the field of QDs and develop further biomedical applications.
    DOI:  https://doi.org/10.1038/s41596-024-01133-5
  24. Annu Rev Biochem. 2025 Mar 18.
      Lipids are a major class of biological molecules, the primary components of cellular membranes, and critical signaling molecules that regulate cell biology and physiology. Due to their dynamic behavior within membranes, rapid transport between organelles, and complex and often redundant metabolic pathways, lipids have traditionally been considered among the most challenging biological molecules to study. In recent years, a plethora of tools bridging the chemistry-biology interface has emerged for studying different aspects of lipid biology. Here, we provide an overview of these approaches. We discuss methods for lipid detection, including genetically encoded biosensors, synthetic lipid analogs, and metabolic labeling probes. For targeted manipulation of lipids, we describe pharmacological agents and controllable enzymes, termed membrane editors, that harness optogenetics and chemogenetics. To conclude, we survey techniques for elucidating lipid-protein interactions, including photoaffinity labeling and proximity labeling. Collectively, these strategies are revealing new insights into the regulation, dynamics, and functions of lipids in cell biology.
    DOI:  https://doi.org/10.1146/annurev-biochem-083024-110827
  25. Chem Rev. 2025 Mar 19.
      4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
    DOI:  https://doi.org/10.1021/acs.chemrev.4c00070
  26. ACS Macro Lett. 2025 Mar 18. 420-427
      Adhesives with debonding-on-demand (DoD) capability can simplify and improve manufacturing processes, extend the life cycle of products, and facilitate recycling, thus attracting fast-growing interest for use in different sectors. A general design approach for DoD adhesives is based on supramolecular polymers, which can be disassembled by an external stimulus, allowing the modification of the physical properties of these materials. However, the adhesive strength of supramolecular adhesives is generally limited to a few megapascals, and their synthesis is often quite involved. Here, we report that these problems can be overcome by a family of adhesives that were inspired by the structure and function of the natural resin shellac. These adhesives are based on linear oligomers of bisphenol A diglycidyl ether and secondary diamines and have, despite the widespread use of cross-linked epoxy thermosets, remained unexplored thus far. We show that if the molecular weight is limited, highly soluble and melt-processable adhesives can be produced. Adhesion tests performed on lap joints made with stainless steel substrates reveal a shear strength of 3.5-16 MPa, and the upper limit of this range exceeds the bond strength of the shellac blueprint and many previous supramolecular adhesives. We demonstrate that debonding upon heating above the glass transition temperature is readily possible and that broken joints can easily rebond without any loss in adhesive strength.
    DOI:  https://doi.org/10.1021/acsmacrolett.5c00035
  27. ACS Synth Biol. 2025 Mar 18.
      In vitro display technologies, exemplified by phage and yeast display, have emerged as powerful platforms for antibody discovery and engineering. However, the identification of antibodies that disrupt target functions beyond binding remains a challenge. In particular, there are very few strategies that support identification and engineering of either protein-based irreversible binders or inhibitory enzyme binders. Expanding the range of chemistries in antibody libraries has the potential to lead to efficient discovery of function-disrupting antibodies. In this work, we describe a yeast display-based platform for the discovery of chemically diversified antibodies. We constructed a billion-member antibody library, called the "Clickable CDR-H3 Library", that supports the presentation of a range of chemistries within antibody variable domains via noncanonical amino acid (ncAA) incorporation and subsequent bioorthogonal click chemistry conjugations. Use of a polyspecific orthogonal translation system enables introduction of chemical groups with various properties, including photoreactive, proximity-reactive, and click chemistry-enabled functional groups for library screening. We established conjugation conditions that facilitate modification of the full library, demonstrating the feasibility of sorting the full billion-member library in "protein-small molecule hybrid" format in future work. Here, we conducted initial library screens after introducing O-(2-bromoethyl)tyrosine (OBeY), a weakly electrophilic ncAA capable of undergoing proximity-induced crosslinking to a target. Enrichments against donkey IgG and protein tyrosine phosphatase 1B (PTP1B) each led to the identification of several OBeY-substituted clones that bind to the targets of interest. Flow cytometry analysis on the yeast surface confirmed higher retention of binding for OBeY-substituted clones compared to clones substituted with ncAAs lacking electrophilic side chains after denaturation. However, subsequent crosslinking experiments in solution with ncAA-substituted clones yielded inconclusive results, suggesting that weakly reactive OBeY side chain is not sufficient to drive robust crosslinking in the clones isolated here. Nonetheless, this work establishes a multimodal, chemically expanded antibody library and demonstrates the feasibility of conducting discovery campaigns in chemically expanded format. This versatile platform offers new opportunities for identifying and characterizing antibodies with properties beyond what is accessible with the canonical amino acids, potentially enabling discovery of new classes of reagents, diagnostics, and even therapeutic leads.
    Keywords:  antibody engineering; genetic code expansion; high throughput screening; noncanonical amino acids; yeast display
    DOI:  https://doi.org/10.1021/acssynbio.4c00421
  28. ACS Appl Mater Interfaces. 2025 Mar 17.
      Toward the goal of in vitro engineering of functional salivary gland tissues, we cultured primary human salivary stem/progenitor cells (hS/PCs) in hyaluronic acid-based matrices with varying percentages of proteolytically degradable crosslinks in the presence of Rho kinase (ROCK) inhibitor. Single cells encapsulated in the hydrogel grew into organized multicellular structures by day 15, and over 60% of the structures developed in the nondegradable and 50% degradable hydrogels contained a central lumen. Importantly, ROCK inhibition led to the establishment of multicellular structures that were correctly polarized, as evidenced by apical localization of a Golgi marker GM130, apical/lateral localization of tight junction protein zonula occludens-1 (ZO-1), and basal localization of integrin β1 and basement membrane proteins laminin α1 and collagen IV. Cultures maintained in 50% degradable gels with ROCK inhibition exhibited an increased expression of acinar markers aquaporin 5 (AQP5, AQP5) and sodium-potassium-chloride cotransporter 1 (SLC12A2, NKCC1) at the transcript and the protein levels, respectively, as compared to those without ROCK inhibition. Upon stimulation with isoproterenol, α-amylase secretion into the lumen was observed. Particle-tracking microrheology was employed to analyze the stiffness of cells using mitochondria as the passive tracer particles. Our results indicated that cells grown in 100% degradable gels were stiffer than those maintained in nondegradable gels, and cells cultured with the ROCK inhibitor were softer than those maintained without the inhibitor. We conclude that reducing cellular contractility via ROCK inhibition while retaining some degree of matrix confinement promotes the establishment of multicellular structures containing pro-acinar cells with correct apicobasal polarization.
    Keywords:  ROCK inhibition; degradation; hydrogels; polarization; salivary gland
    DOI:  https://doi.org/10.1021/acsami.4c22507
  29. Nat Commun. 2025 Mar 19. 16(1): 2705
      Synthesizing distinct phases and controlling crystalline defects are key concepts in materials design. These approaches are often decoupled, with the former grounded in equilibrium thermodynamics and the latter in nonequilibrium kinetics. By unifying them through defect phase diagrams, we can apply phase equilibrium models to thermodynamically evaluate defects-including dislocations, grain boundaries, and phase boundaries-establishing a theoretical framework linking material imperfections to properties. Using scanning transmission electron microscopy (STEM) with differential phase contrast (DPC) imaging, we achieve the simultaneous imaging of heavy Fe and light O atoms, precisely mapping the atomic structure and chemical composition at the iron-magnetite (Fe/Fe3O4) interface. We identify a well-ordered two-layer interface-stabilized phase state (referred to as complexion) at the Fe[001]/Fe3O4[001] interface. Using density-functional theory (DFT), we explain the observed complexion and map out various interface-stabilized phases as a function of the O chemical potential. The formation of complexions increases interface adhesion by 20% and alters charge transfer between adjacent materials, impacting transport properties. Our findings highlight the potential of tunable defect-stabilized phase states as a degree of freedom in materials design, enabling optimized corrosion protection, catalysis, and redox-driven phase transitions, with applications in materials sustainability, efficient energy conversion, and green steel production.
    DOI:  https://doi.org/10.1038/s41467-025-58022-y
  30. Biochemistry. 2025 Mar 18.
      Glycosylated macrolactones (macrolides) often display broad and potent biological activities and are targets for drug development and discovery. The modular genetic organization of macrolide polyketide synthases (PKSs) and various polyketide tailoring enzymes has inspired the combinatorial biosynthesis of new-to-nature macrolides. However, most engineered PKS and macrolide biosynthetic pathways are ineffective and produce reduced or negligible product titers. Directed evolution could improve the activity of engineered PKSs and associated pathways but critically requires a high-throughput screen to identify active variants from large libraries. Transcription factor-based biosensors can be used for this purpose. However, the effector specificity of the only known macrolide-sensing transcription factor MphR is limited to macrolides modified with the sugar, desosamine. The potential applications of MphR are subsequently limited, ruling out the possibility of leveraging MphR to screen libraries of pathway variants that make macrolactones that lack sugars (i.e., macrolide aglycones) such as the direct products of PKSs. In this study, we aimed to engineer the effector specificity of the MphR biosensor strain for detecting macrolide aglycones. By developing an "effector walking" strategy coupled with efflux pump deletion, the effector profile of MphR was dramatically broadened to include several erythronolide macrolactones. This work sets the stage for applying directed evolution and other high-throughput screening approaches to various PKSs. Our results suggest a broadly applicable approach to developing biosensors that detect ligands that are very different in structure from the native effector.
    DOI:  https://doi.org/10.1021/acs.biochem.4c00795
  31. Nat Biotechnol. 2025 Mar 20.
      Cell-type-specific regulatory elements such as enhancers can direct expression of recombinant adeno-associated viruses (AAVs) to specific cell types, but this approach is limited by the relatively small packaging capacity of AAVs. In this study, we used spatial genomics to show that transcriptional crosstalk between individual AAV genomes provides a general method for cell-type-specific expression of large cargo by separating distally acting regulatory elements into a second AAV genome. We identified and profiled transcriptional crosstalk in AAV genomes carrying 11 different enhancers active in mouse brain. We developed spatial genomics methods to identify and localize AAV genomes and their concatemeric forms in cultured cells and in tissue, and we demonstrate here that transcriptional crosstalk is dependent upon concatemer formation. Finally, we leveraged transcriptional crosstalk to drive expression of a 3.2-kb Cas9 cargo in a cell-type-specific manner with systemically administered engineered AAVs, and we demonstrate AAV-delivered, minimally invasive, cell-type-specific gene editing in wild-type mice that recapitulates known disease phenotypes.
    DOI:  https://doi.org/10.1038/s41587-025-02565-4
  32. Nat Chem Biol. 2025 Mar 14.
      Engineering of nuclear condensates with chemically inducible gene switches is highly desired but challenging for precise and on-demand regulation of mammalian gene expression. Here, we harness the phase-separation capability of biomolecular condensates and describe a versatile strategy to chemically program ligand-dependent gene expression at various stages of interest. By engineering synthetic anchor proteins capable of tethering various genetically encoded condensate structures toward different cellular compartments or gene products of interest, inducible regulation of transcriptional and translational activities was achieved at different endogenous and episomal loci using the same sets of anchor proteins and synthetic solid-state condensates. Using such a holistic condensate-based strategy, we not only achieved regulation performances comparing favorably to state-of-the-art strategies described for CRISPR-Cas9 activity and transcriptional silencing but further showed that chemically inducible retention of mRNA molecules into engineered condensate structures within the nucleus can become a remarkably efficient alternative for translational regulation.
    DOI:  https://doi.org/10.1038/s41589-025-01860-0
  33. ACS Nano. 2025 Mar 21.
      Adeno-associated virus (AAV) has emerged as a leading platform for gene therapy, enabling the delivery of therapeutic DNA to target cells. However, the potential of AAV to deliver protein payloads has been unexplored. In this study, we engineered a protein carrier AAV (pcAAV) to package and deliver proteins by inserting binding domains on the interior capsid surface. These binding domains mediate the packaging of specific target proteins through interaction with cognate peptides or protein tags during the capsid assembly process. We demonstrate the packaging of multiple proteins, including green fluorescent protein, Streptococcus pyogenes Cas9, Cre recombinase, and the engineered peroxidase APEX2. Packaging efficiency is modulated by the binding domain insertion site, the viral protein isoform containing the binding domain, and the subcellular localization of the target protein. We show that pcAAV can enter cells and deliver the protein payload and that enzymes retain their activity after packaging. Importantly, this protein packaging capability can be translated to multiple AAV serotypes. Our work establishes AAV as a protein delivery vehicle, significantly expanding the utility of this viral vector for biomedical applications.
    Keywords:  adeno-associated virus; capsid engineering; nanoparticles; protein delivery; synthetic virology
    DOI:  https://doi.org/10.1021/acsnano.5c01498