bims-enlima Biomed News
on Engineered living materials
Issue of 2024–12–15
fourteen papers selected by
Rahul Kumar, Tallinna Tehnikaülikool



  1. Adv Mater. 2024 Dec 10. e2412555
      Microorganisms hosted in abiotic structures have led to engineered living materials that can grow, sense, and adapt in ways that mimic biological systems. Although porous structures should favor colonization by microorganisms, they have not yet been exploited as abiotic scaffolds for the development of living materials. Here, porous ceramics are reported that are colonized by bacteria to form an engineered living material with self-regulated and genetically programmable carbon capture and gas-sensing functionalities. The carbon capture capability is achieved using wild-type photosynthetic cyanobacteria, whereas the gas-sensing function is generated utilizing genetically engineered E. coli. Hierarchical porous clay is used as a ceramic scaffold and evaluated in terms of bacterial growth, water uptake, and mechanical properties. Using state-of-the-art chemical analysis techniques, the ability of the living porous ceramics are demonstrated to capture CO2 directly from the air and to metabolically turn minute amounts of toxic gas into a benign scent detectable by humans.
    Keywords:  bio‐sensing; engineered living materials; microorganisms; scaffolds; synthetic biology
    DOI:  https://doi.org/10.1002/adma.202412555
  2. Acc Chem Res. 2024 Dec 12.
      ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics in vitro, biomaterial matrices have been developed with tailorable properties that can be modulated in situ in the presence of cells. While numerous macromolecules can serve as a basis in the design of a synthetic ECM, our group has exploited multi-arm poly(ethylene glycol) (PEG) macromolecules because of the ease of functionalization, many complementary bio-click reactions to conjugate biological signals, and ultimately, the ability to create well-defined systems to investigate cell-matrix interactions. To date, significant strides have been made in developing bio-responsive and transient synthetic ECM materials that degrade, relax stress, or strain-stiffen in response to cell-mediated stimuli through ECM-cleaving enzymes or integrin-mediated ECM adhesions. However, our group has also designed hydrogels incorporating different photoresponsive moieties, and these moieties facilitate user-defined spatiotemporal modulation of the extracellular microenvironment in vitro. The application of light allows one to break, form, and rearrange network bonds in the presence of cells to alter the biomechanical and biochemical microenvironment to investigate cell-matrix interactions in real-time. Such photoresponsive materials have facilitated fundamental discoveries in the biological pathways related to outside-in signaling, which guide important processes related to tissue development, homeostasis, disease progression, and regeneration.This review focuses on the phototunable chemical toolbox that has been used by Anseth and co-workers to modulate hydrogel properties post-network formation through: bond-breaking chemistries, such as o-nitrobenzyl and coumarin methyl ester photolysis; bond-forming chemistries, such as azadibenzocyclooctyne photo-oligomerization and anthracene dimerization; and bond-rearranging chemistries, such as allyl sulfide addition-fragmentation chain transfer and reversible ring opening polymerization of 1,2-dithiolanes. By using light to modulate the cellular microenvironment (in 2D, 3D, and even 4D), innovative experiments can be designed to study mechanosensing of single cells or multicellular constructs, pattern adhesive ligands to spatially control cell-integrin binding or modulate on-demand the surrounding cell niche to alter outside-in signaling in a temporally controlled manner. To date, these photochemically defined materials have been used for the culture, differentiation, and directed morphogenesis of primary cells and stem cells, co-cultured cells, and even multicellular constructs (e.g., organoids).Herein, we present examples of how this photochemical toolbox has been used under physiological reaction conditions with spatiotemporal control to answer important biological questions and address medical needs. Specifically, our group has exploited these materials to study mesenchymal stem cell mechanosensing and differentiation, the activation of fibroblasts in the context of valve and cardiac fibrosis, muscle stem cell response to matrix changes during injury and aging, and predictable symmetry breaking during intestinal organoid development. The materials and reactions described herein are diverse and enable the design and implementation of an array of hydrogels that can serve as cell delivery systems, tissue engineering scaffolds, or even in vitro models for studying disease or screening for new drug treatments.
    DOI:  https://doi.org/10.1021/acs.accounts.4c00548
  3. Proc Natl Acad Sci U S A. 2024 Dec 17. 121(51): e2409335121
      Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication of more complex structures. Here, we employ a synthetic biology approach to produce environmentally friendly, living microlenses with tunable structural properties. We engineered Escherichia coli bacteria to display the silica biomineralization enzyme silicatein from aquatic sea sponges. Our silicatein-expressing bacteria can self-assemble a shell of polysilicate "bioglass" around themselves. Remarkably, the polysilicate-encapsulated bacteria can focus light into intense nanojets that are nearly an order of magnitude brighter than unmodified bacteria. Polysilicate-encapsulated bacteria are metabolically active for up to 4 mo, potentially allowing them to sense and respond to stimuli over time. Our data demonstrate that synthetic biology offers a pathway for producing inexpensive and durable photonic components that exhibit unique optical properties.
    Keywords:  bioglass; engineered living materials; photonic nanojets; silicatein; synthetic biology
    DOI:  https://doi.org/10.1073/pnas.2409335121
  4. Colloids Surf B Biointerfaces. 2024 Dec 06. pii: S0927-7765(24)00694-5. [Epub ahead of print]247 114435
      Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
    Keywords:  Biological macromolecules; Matrigel; Organoid
    DOI:  https://doi.org/10.1016/j.colsurfb.2024.114435
  5. Biofabrication. 2024 Dec 11.
      3D-bioprinting is a promising technique to mimic the complex anatomy of natural tissues, as it comprises a precise and gentle way of placing bioinks containing cells and hydrogel. Although hydrogels expose an ideal growth environment due to their extracellular matrix (ECM)-like properties, high water amount and tissue like microstructure, they lack mechanical strength and possess a diffusion limit of a couple of hundred micrometers. Integration of electrospun fibers could hereby benefit in multiple ways, for instance by controlling mechanical characteristics, cell orientation, direction of diffusion and anisotropic swelling behavior. The aim of this study is to create an advanced ECM-biomimicking scaffold material for tissue engineering, which offers enhanced diffusion properties. PCL bulk membranes were successfully electrospun and fragmented using a cryo cutting technique. Subsequently, these short single fibers (<400 µm in length and ~5-10 µm in diameter) were embedded in an agarose-based hydrogel after hydrophilization of the short single fibers by O2 plasma treatment. Fiber-filled bioinks exhibit significantly improved biomolecule diffusion (>500 µm), swelling properties (20-60% of control), and higher mechanical strength, while its viscosity (5-30 mPas*s) and gelation kinetics (28°C) remained almost unaffected. The diffusion tests indicate a high level of size selectivity, which can be utilized for targeted biomolecule transport in the future. Finally, applying 3D-bioprinting technology (drop-on-demand vs. microextrusion) a print setting dependent post-dispensing orientation of the fibers could be induced, which ultimately paves way for the fabrication of metamaterials with anisotropic material properties. As expected the fiber-filled bioink was found to be non-cytotoxic in cell culture trials using HUVECs and HepG2 (>80% viability). In summary, microfiber integation holds great promise for 3D-bioprinting of tissue percursors with advanced metamaterial properties and thus offers high applicability in various fields of research, such as in-vitro tissue models, tissue engineered implants or cultivated meat.
    Keywords:  3D-bioprinting; electrospinning; fiber anisotropy; metamaterials; nutrient diffusion
    DOI:  https://doi.org/10.1088/1758-5090/ad9d7a
  6. Trends Biotechnol. 2024 Dec 05. pii: S0167-7799(24)00314-7. [Epub ahead of print]
      Building on a productive two decades of advancements in synthetic biology, engineering biology now promises to enable the implementation and scale-up of novel biological systems tailored to tackle urgent global challenges. Here we explore the latest engineering biology approaches for the control and modification of bacterial biofilms with exciting new functionalities.
    Keywords:  EngBio; biofilm engineering; functional biofilms; genetic circuits; optogenetics; synthetic regulation
    DOI:  https://doi.org/10.1016/j.tibtech.2024.11.002
  7. ACS Appl Mater Interfaces. 2024 Dec 10.
      Modulating microbial motility and physiology can enhance the production of bacterial macromolecules and small molecules. Herein, a platform of water-soluble and amphiphilic peptidomimetic polyurethanes is reported as a means of regulating bacterial surface behavior and the concomitant production of extracellular polymeric substances (EPS). It is demonstrated that carboxyl (-COOH)-containing polyurethanes exhibited 17-fold and 80-fold enhancements in Pseudomonas aeruginosa (P. aeruginosa) swarming and twitching areas, respectively. Conversely, an amine (-NH2)-functionalized polyurethane reduces the P. aeruginosa swarming area by 58%. Similar influences on the surface motility of Escherichia coli (E. coli) and a nonswarming P. aeruginosa mutant strain are also observed. Notably, -COOH polyurethanes completely wet the agar hydrogel surface and promote bacterial surface proliferation, resulting in enhanced EPS and rhamnolipid production. The programming of bacterial spatial migration into designed patterns is achieved by leveraging the opposing influences of -NH2 and -COOH polyurethanes. The results highlight the potential of this synthetic polyurethane platform and potentially other polymer systems as an exciting approach to control bacterial surface behaviors and influence the production of engineered living materials.
    Keywords:  EPS production; bacterial behavior control; bacterial migration; bacterial motility modulation; bacterial motility patterns; enhancing bacterial metabolites
    DOI:  https://doi.org/10.1021/acsami.4c15009
  8. Nucleic Acids Res. 2024 Dec 09. pii: gkae1158. [Epub ahead of print]
      In order to increase our command over genetically engineered bacterial populations in bioprocessing and therapy, synthetic regulatory circuitry needs to enable the temporal programming of a number of consecutive functional tasks without external interventions. In this context, we have engineered a genetic circuit encoding an autonomous but chemically tunable timer in Escherichia coli, based on the concept of a transcription factor cascade mediated by the cytoplasmic dilution of repressors. As proof-of-concept, we used this circuit to impose a time-resolved two-staged synthetic pathway composed of a production-followed-by-lysis program, via a single input. Moreover, via a recombinase step, this synchronous timer was further engineered into an asynchronous timer in which the generational distance of differentiating daughter cells spawning off from a stem-cell like mother cell becomes a predictable driver and proxy for timer dynamics. Using this asynchronous timer circuit, a temporally defined population heterogeneity can be programmed in bacterial populations.
    DOI:  https://doi.org/10.1093/nar/gkae1158
  9. bioRxiv. 2024 Nov 27. pii: 2024.11.26.625566. [Epub ahead of print]
      Cells contain membrane-bound and membraneless organelles that operate as spatially distinct biochemical niches. However, these subcellular reaction centers lose fidelity with aging and as a result of disease. A grand challenge for biomedicine is restoring or augmenting cellular functionalities. Although commonly tackled by gene replacement therapy, an excited new strategy is the delivery of protein-based materials that can directly interact with and alternative biological networks inside a cell. In this study we sought to develop long-lasting materials capable of cellular uptake and incorporation, akin to an artificial organelle or intracellular interaction hub. Drawing inspiration from protein-based membranelles organelles we developed a new delivery method to transplant micron size peptide compartments into living cells. We determined conditions to form large stable coacervates that are efficiently taken up by a variety of useful cell types and demonstrate their intracellular stability over time. We developed tools to enhance the extent and spatial organization of cargo loading into these coacervates, including co-assembly of nanobodies that selectively bind to targets of interest. Combining them together, we demonstrate successful targeting of GFP-tagged cargo inside cells. These results represent an important first step toward the development of deliverable synthetic organelles that can be fabricated in vitro and taken up by cells for applications in cell engineering and regenerative medicine.
    DOI:  https://doi.org/10.1101/2024.11.26.625566
  10. Angew Chem Int Ed Engl. 2024 Dec 10. e202414372
      The spontaneous emergence of lipid vesicles in the absence of evolved biological machinery represents a major challenge for bottom-up synthetic biology. We show that coacervate microdroplets could create a compartmentalized environment that enriches lipid molecules and facilitates their spontaneous assembly into lipid vesicles. These vesicles can escape from the coacervate microdroplets in a continuous process under non-equilibrium conditions, resembling a constant production process akin to a "primitive enzyme" factory assembly line. These findings significantly extend our understanding of the intricate interaction between lipid molecules and coacervate microdroplets, shedding light on the emergence of cellular systems and offering a new perspective on the conditions necessary for the development of life on Earth.
    Keywords:  Coacervate microdroplets, lipid vesicle, bottom-up synthetic biology, compartmentalization, non-equilibrium thermodynamics
    DOI:  https://doi.org/10.1002/anie.202414372
  11. Proc Jpn Acad Ser B Phys Biol Sci. 2024 ;100(10): 579-606
      Biomimetic molecular designs can yield superior biomaterials. Polymers with a phosphorylcholine group, a polar group of phospholipid molecules, are particularly interesting. A methacrylate monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC), was developed using efficient synthetic reactions and purification techniques. This process has been applied in industrial production to supply MPC globally. Polymers with various structures can be readily synthesized using MPC and their properties have been studied. The MPC polymer surface has a highly hydrated structure in biological conditions, leading to the prevention of adsorption of proteins and lipid molecules, adhesion of cells, and inhibition of bacterial adhesion and biofilm formation. Additionally, it provides an extremely lubricious surface. MPC polymers are used in various applications and can be stably immobilized on material surfaces such as metals and ceramics and polymers such as elastomers. They are also stable under sterilization and in vivo conditions. This makes them ideal for application in the surface treatment of various medical devices, including artificial organs, implanted in humans.
    Keywords:  biocompatible polymer; fluid lubrication; hydrophobic hydration; medical devices; phosphorylcholine group
    DOI:  https://doi.org/10.2183/pjab.100.037
  12. Mater Today Bio. 2024 Dec;29 101342
      Hydrogels, that are crosslinked polymer networks, can absorb huge quantities of water and/or biological fluids. Their physical properties, such as elasticity and soft tissue, together with their biocompatibility and biodegradability, closely resemble living tissues. The versatility of hydrogels has fuelled their application in various fields, such as agriculture, biomaterials, the food industry, drug delivery, tissue engineering, and regenerative medicine. Their combination with nanoparticles, specifically with Mesoporous Silica Nanoparticles (MSNs), have elevated these composites to the next level, since MSNs could improve the hydrogel mechanical properties, their ability to encapsulate and controlled release great amounts of different therapeutic agents, and their responsiveness to a variety of external and internal stimuli. In this review, the main features of both MSNs and hydrogels are introduced, followed by the discussion of different hydrogels-MSNs structures and an overview of their use in different applications, such as drug delivery technologies and tissue engineering.
    Keywords:  Composites; Drug delivery; Hydrogels; Mesoporous silica nanoparticles; Tissue engineering
    DOI:  https://doi.org/10.1016/j.mtbio.2024.101342
  13. Small. 2024 Dec 10. e2407956
      Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) are nanoscale materials with unique mechanical properties and geometry that attract considerable interest in recent years for a wide range of applications. This review pays special attention to the recent progress of CNFs and CNCs assisted 3D printing in medicine, food, engineering, and architecture fields. Various types of CNFs and CNCs used for 3D printing are summarized. The addition of nanocellulose improves the printability and quality of printed objects in certain cases, leading to greater accuracy and durability. The created functional structures with specific properties have promising applications in various fields such as medicine and food preservation and viscosity enhancement. Finally, this work highlights the transformative potential of nanocellulose-assisted 3D printing to revolutionize a range of fields and the need for continued research and development to overcome current technical challenges.
    Keywords:  3D printing; applications; cellulose nanocrystals; cellulose nanofibrils; ink properties; raw materials
    DOI:  https://doi.org/10.1002/smll.202407956
  14. iScience. 2024 Dec 20. 27(12): 111378
      Investigating nature's ingenious designs and systems has become a cornerstone of innovation, influencing fields from robotics, biomechanics, and physics to material sciences. Two key questions, however, regarding bio-inspired innovation are those of how and where does one find bio-inspiration? The perspective presented here is aimed at providing insights into the evolving landscape of bio-inspiration discovery. We present the unique case of the female locust's oviposition as a valuable example for researchers and engineers seeking to pursue multifaceted research, encompassing diverse aspects of biological and bio-inspired systems. The female locust lays her eggs underground to protect them and provide them with optimal conditions for survival and hatching. To this end, she uses a dedicated apparatus comprising two pairs of special digging valves to propagate underground, while remarkably extending her abdomen by 2- to 3-fold its original length. The unique digging mechanism, the subterranean steering ability, and the extreme elongation of the abdomen, including the reversible extension of the abdominal central nervous system, all spark a variety of questions regarding materials, morphology, mechanisms, and their interactions in this complex biological system. We present the cross-discipline efforts to elucidate these fascinating questions, and provide future directions for developing bio-inspired technological innovations based on this remarkable biological system.
    Keywords:  Biological sciences; Engineering; Physics
    DOI:  https://doi.org/10.1016/j.isci.2024.111378