bims-engexo Biomed News
on Engineered exosomes
Issue of 2025–02–09
eight papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Int J Oral Sci. 2025 Feb 04. 17(1): 11
      The oral and maxillofacial region is a highly complex area composed of multiple tissue types and bears various critical functions of the human body. Diseases in this region pose significant diagnostic and management challenges; therefore, exploring new strategies for early diagnosis, targeted treatment, and tissue reconstruction is key to improving patient prognosis and quality of life. Extracellular vesicles are a group of heterogeneous lipid-bilayer membrane structures secreted by most cell types, including exosomes, microvesicles, and apoptotic bodies. Present in various body fluids and tissues, they act as messengers via the transfer of nucleic acids, proteins, and metabolites to recipient cells. To date, studies have revealed the different roles of extracellular vesicles in physiological or pathological processes, as well as applications in disease diagnosis, prognosis, and treatment. The importance and tissue specificity of the dental and maxillofacial tissues indicate that extracellular vesicles derived from this region are promising for further research. This paper reviews the published data on extracellular vesicles derived from cells, body fluids, and tissues in oral and maxillofacial regions, summarizes the latest advances in extracellular vesicles from extensive sources, and concludes with a focus on the current research progress and application prospects of engineered exosomes in oral science.
    DOI:  https://doi.org/10.1038/s41368-024-00341-9
  2. Int J Nanomedicine. 2025 ;20 1285-1302
       Purpose: Treatment for bone and joint tuberculosis (BJTB) is challenging due to its refractory and recurrent nature. This study aimed to develop a bioimplantable scaffold with osteoinductive and antituberculosis characteristics to treat BJTB.
    Methods: This scaffold is built on oxidized hyaluronic acid and carboxymethyl chitosan hydrogel mixed with hydroxyapatite as a bone tissue engineered material. In order to make the scaffold have the biological activity of promoting tissue repair, the engineered exosomes (Exoeng) were added innovatively. In addition, drug-loaded liposomes equipped with an aldehyde group on the surface are cross-linked with the amine group of the hydrogel skeleton to participate in the Schiff base reaction.
    Results: The designed scaffold has characteristics of self-healing and injectability exhibit excellent anti-tuberculosis and promoting bone repair activities. Exoeng strongly stimulates cellular angiogenesis and osteogenic differentiation. The liposomes coated in hydrogel can release three kinds of anti-tuberculosis drugs smoothly and slowly, achieving a long term anti-tuberculosis.
    Conclusion: The composite bio-scaffold shows good tissue repair and long-term anti-tuberculosis abilities, which expected to provide a viable treatment plan for bone-related BJTB.
    Keywords:  bone and joint tuberculosis; engineered exosomes; hydrogel scaffolds; therapy; triple anti-tuberculosis drugs loaded
    DOI:  https://doi.org/10.2147/IJN.S480288
  3. Int J Pharm. 2025 Jan 30. pii: S0378-5173(25)00128-0. [Epub ahead of print] 125292
      Hepatic ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of patients undergoing surgery. Exosomes derived from mesenchymal stem cells (MSC-EXOs) are widely used and play a therapeutic role in hepatic IRI. However, natural exosomes lack liver-targeting ability and have low bioavailability. In this study, MSC-EXOs were simply modified with OPDEA-PCL or liver-targeting DSPE-PEG2000-Galactose, forming OPDEA-PCL-modified MSC-EXOs (OP-EXOs) or DSPE-PEG2000-Galactose-modified MSC-EXOs (GPEG-EXOs). In mouse hepatic IRI model, OP-EXOs and GPEG-EXOs both significantly reduced alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) levels in serum after hepatic IRI, alleviating liver injury. Transcriptomic and proteomic analyses showed that OP-EXOs and GPEG-EXOs reduced hepatic IRI by downregulating the expression of S100A8, S100A9, SELP, and ANXA2 in the liver following IRI. This study opens a new paradigm for the treatment of hepatic IRI using engineered MSC-EXOs with the potential to improve the prognosis of liver surgery.
    Keywords:  Exosomes; Hepatic ischemia–reperfusion injury; Liver targeting engineering; Mesenchymal stem cells
    DOI:  https://doi.org/10.1016/j.ijpharm.2025.125292
  4. Front Immunol. 2024 ;15 1513196
       Background: Intestinal ischemia-reperfusion injury (IIRI) is a severe clinical condition associated with high morbidity and mortality. Despite advances in understanding the pathophysiology of IIRI, effective diagnostic and therapeutic strategies remain limited.
    Methods: Using transcriptome sequencing in a mouse model of IIRI, we identified potential biomarkers that were significantly upregulated in the IIRI group compared to the sham group. Based on these findings, we developed and evaluated a therapeutic strategy using milk-derived exosomes loaded with siRNA targeting CCL7 (M-Exo/siCCL7).
    Results: Focusing on Ccl7 as a hub gene, we explored the therapeutic efficacy of milk-derived exosomes loaded with siRNA targeting Ccl7 (M-Exo/siCCL7) in the IIRI model. M-Exo/siCCL7 treatment effectively attenuated intestinal inflammation and injury, as evidenced by reduced histological damage, decreased serum markers of intestinal barrier dysfunction, and attenuated systemic inflammation.
    Conclusion: Our findings provide new insights into the molecular mechanisms underlying IIRI, identify potential diagnostic biomarkers, and highlight the promise of exosome-based siRNA delivery as a novel therapeutic approach for IIRI.
    Keywords:  CCL7; biomarkers; inflammation; intestinal ischemia-reperfusion injury; milk-derived exosomes; siRNA delivery
    DOI:  https://doi.org/10.3389/fimmu.2024.1513196
  5. Stem Cell Res Ther. 2025 Feb 04. 16(1): 40
       BACKGROUND: Peritoneal fibrosis (PF) is a serious complication commonly associated with prolonged peritoneal dialysis. Mesenchymal stem cells (MSCs) and their exosomes (Exo) have shown significant therapeutic promise in treating fibrotic conditions. Danshensu (DSS), a bioactive compound from the traditional Chinese herb Danshen reverses fibrosis. This study aims to investigate a novel strategy to enhance the therapeutic efficacy against PF by DSS preconditioning MSCs-derived exosomes (DSS-Exo).
    METHODS: The in vitro studies included the effects of DSS duration on MSCs, and the characterization of DSS-Exo and Exo, followed by the assessment of RNA and protein expression levels of peritoneal fibrosis markers and inflammatory cytokines levels after treating human peritoneal mesothelial (HMrSV5) cells. In vivo experiments were conducted on a PF mouse model to observe cell morphology, collagen deposition, fibrosis localization, and to evaluate peritoneal functions such as filtration rate, urea nitrogen clearance, peritoneal thickness, and protein leakage. Mechanistic insights were gained through the analysis of the STAT3/HIF-1α/VEGF signaling pathway, tissue dual-fluorescence localization,chromatin immunoprecipitation sequencing (ChIP-seq), and dual-luciferase reporter (DLR) assays. Additionally, the differential expression of miRNAs between DSS-Exo and Exo was explored and validation of key miRNA.
    RESULTS: DSS-Exo significantly upregulated E-cadherin, downregulated VEGFA, α-SMA, CTGF and Fibronectin expression in HMrSV5 cells compared to untreated Exo. In vivo studies revealed that DSS-Exo enhanced the ability of Exo to improve peritoneal function,such as the peritoneal filtration rate and urea nitrogen, glucose clearance, while reducing peritoneal thickness and protein leakage, and cell morphology, reduce collagen deposition, and decrease the degree of fibrosis. Mechanistically, these exosomes inhibited the STAT3/HIF-1α/VEGF signaling pathway within peritoneal mesothelial tissues. Furthermore, ChIP-seq and DLR demonstrated that DSS-Exo affected STAT3 directly binds to SHANK2 promoter regions, forming hydrogen bonds between 5 key amino acids such as GLN-344, HIS-332 and 6 key bases such as DG-258, DG-261. miRNA profiling identified DSS-Exo increased hsa-miR-27a-5p_R-1 to regulated STAT3-SHANK2 and modulating the EMT.
    CONCLUSION: This study highlighted the innovative use of Danshensu in enhancing MSC-derived exosome therapy for PF. The identification of the hsa-miR-27a-5p_R-1-STAT3-SHANK2 axis may reveal new molecular mechanisms underlying fibrosis, further research is needed to fully elucidate its impact on PF. The integration of Danshensu from traditional Chinese medicine into modern MSC exosome therapy represents a promising frontier in the development of novel treatments for fibrotic diseases.
    Keywords:  EMT; Fibrosis; HIF; Mesenchymal stem cell exosomes; STAT3; VEGFA
    DOI:  https://doi.org/10.1186/s13287-025-04181-0
  6. Mol Pharm. 2025 Feb 03. 22(2): 972-983
      Antibody therapy has become a mature cancer treatment strategy, but only one antibody drug, bevacizumab (BEV) has been approved to treat glioblastoma (GBM). The natural blood-brain barrier (BBB) significantly limits the penetration of therapeutic antibodies into the brain. In this study, an antibody delivery platform based on exosomes (EXOs) has been developed, which can cross the BBB and effectively enter the brain tissue to deliver BEV for safe and effective GBM therapy. In vitro experiments have shown that EXO-BEV could efficiently penetrate the BBB and significantly inhibit the migration of endothelial cells. Biodistribution studies in vivo have revealed that EXO serves as an effective carrier for transporting a higher concentration of BEV across the BBB into the brain. Furthermore, in vivo antiglioma experiments have illustrated that the introduction of EXO-BEV into the brain can improve the degeneration of pathological tissues, increase the apoptosis of tumor cells, and significantly extend the survival time of the model animals. All of the results suggested that EXO-BEV could cross the BBB, thereby enhancing the apoptosis of tumor cells and mitigating angiogenesis in GBM. In conclusion, this innovative platform for antibody delivery emerges as a highly promising therapeutic strategy for the clinical treatment of GBM and other neurological disorders.
    Keywords:  angiogenesis; bevacizumab; blood−brain barrier; exosomes; glioblastoma
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.4c01227
  7. Stem Cell Res Ther. 2025 Feb 07. 16(1): 48
       BACKGROUND: Exosomes derived from pre-stimulated mesenchymal stem cells (MSCs) have improved therapeutic effects in disease-associated microenvironments. In this study, we investigated the therapeutic potential of exosomes from MSCs stimulated with plasma from patients with liver failure (LF-Exos).
    METHODS: Untreated exosomes (NC-Exos) and LF-Exos were extracted and characterized by nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), western blotting, and miRNA sequencing. We then examined the protective effects of LF-Exos on hepatocytes acutely injured by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) co-treatment and on a mouse model of acute liver failure (ALF). Apoptosis was assessed using the CCK-8 assay and flow cytometry. Liver tissue damage was examined by hematoxylin and eosin staining and immunohistochemistry. The levels of signaling pathway proteins were determined by western blotting.
    RESULTS: Stimulation with plasma from patients with liver failure significantly altered the morphology of MSCs and reduced their proliferative activity. Gene chip analysis identified 31 differentially expressed miRNAs, and further analysis showed that these differentially expressed miRNAs may affect the PI3K-AKT signaling pathway. Compared to NC-Exos, LF-Exos induced AKT phosphorylation in hepatocytes and liver tissues, inhibited D-GalN/LPS-induced apoptosis in hepatocytes, and reduced pathological liver injury in the mouse model of ALF.
    CONCLUSION: The biological effects of Exos were improved after stimulation with plasma from patients with liver failure. LF-Exos may inhibit the activity of the NLRP3 inflammasome and activate the PI3K-AKT signaling pathway to exert protective effects on acutely injured hepatocytes and a mouse model of ALF.
    Keywords:  Exosomes; Liver failure; Mesenchymal stem cells
    DOI:  https://doi.org/10.1186/s13287-025-04163-2
  8. Eur J Med Res. 2025 Feb 04. 30(1): 75
       OBJECTIVE: At all stages of gastric cancer (GC), cisplatin is the first-line chemotherapeutic agent, but its efficacy remains limited, with a response rate of less than 20%, largely because of resistance to the drug. It aims to determine whether macrophage-derived exosomes are involved in the mechanism of cisplatin resistance, in order to identify potential methods for reversing resistance and improving patient outcomes.
    METHODS: Macrophages induced by IL-13 and IL-4 were characterized using flow cytometry, then co-cultured with GC cells and cisplatin. Cell viability and apoptosis were subsequently evaluated through CCK-8 assays and flow cytometry. Exosome miR-194, derived from M2 macrophages, was characterized and co-cultured with gastric cancer cells and cisplatin to assess cell survival. Furthermore, a mouse GC model was established, and miR-194 was injected to observe tumor growth.
    RESULTS: Results indicate that M2 macrophages enhance cisplatin resistance in gastric cancer cells mainly through miR-194, as demonstrated by CCK-8 and apoptosis assays. Cellular uptake experiments demonstrated that miR-194 can transfer from macrophages to GC cells and exert functional effects. Western blotting and PCR analysis further confirmed that macrophage-derived miR-194 inhibits apoptosis in GC cells and enhances cisplatin resistance by downregulating PTEN.
    CONCLUSION: Macrophage-derived miR-194 promotes cisplatin resistance in GC cells by inhibiting apoptosis through PTEN downregulation. These findings provide new insights and theoretical backing for clinical treatment strategies in GC.
    Keywords:  Apoptosis; Cisplatin resistance; Gastric cancer; Macrophage; miR-194
    DOI:  https://doi.org/10.1186/s40001-025-02329-5