bims-engexo Biomed News
on Engineered exosomes
Issue of 2025–01–12
five papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Biomedicines. 2024 Dec 09. pii: 2791. [Epub ahead of print]12(12):
      Stem cell transplantation has proven effective in treating acute and chronic wounds, but its limitations, such as low cellular viability and the need for specialized transportation, highlight the necessity for alternative approaches. This review explores the potential of engineered exosomes, containing identified miRNAs/peptides, as a more stable and efficient cell-free therapy for regenerative medicine, particularly in wound healing. The discussion emphasizes the benefits of exosomes, including their stability, reduced damage, and consistent biological activity, paving the way for innovative applications like lyophilized exosomes, mist spray delivery, and exosome-based scaffolds. The exploration of cell-free therapy in this review holds promising implications for advancing wound-healing strategies.
    Keywords:  biomarkers; exosomes; miRNAs; peptides; stem cells; transplantation
    DOI:  https://doi.org/10.3390/biomedicines12122791
  2. Anal Chim Acta. 2025 Jan 22. pii: S0003-2670(24)01078-X. [Epub ahead of print]1336 343277
      Glycosylation, the intricate process of adding carbohydrate motifs to proteins, lipids, and exosomes on the cell surface, is crucial for both physiological and pathological mechanisms. Alterations in glycans significantly affect cancer cell metastasis by mediating cell-cell and cell-matrix interactions. The subtle changes in glycosylation during malignant transformations highlight the importance of analyzing cell and exosome surface glycosylation for prognostic and early treatment strategies in cancer. This review focuses on recent advancements in sensors for detecting surface glycans on cancer cells, exosomes, and circulating cancer-derived glycoproteins. Among various methods, electrochemical biosensors stand out as a promising tool, offering rapid and cost-effective glycan detection. These devices detect glycan interactions by measuring changes in electrical signals resulting from specific binding events. Techniques such as differential pulse voltammetry, impedance spectroscopy, and chrono amperometry are commonly employed for glycan detection using electrochemical biosensors. Researchers are exploring novel electrode materials and surface functionalization strategies to enhance sensor performance. Notably, selective binding probes such as lectins, aptamers, antibodies, and boronic acids are discussed, with lectins being the most prevalent for specific glycan analysis. By highlighting the significance of electrochemical techniques, emphasizing the role of selective binding probes, integrating microfluidics and miniaturized devices could lead to point-of-care applications for cancer diagnosis and monitoring. This review aims to provide valuable insights for researchers and clinicians working in the field of cancer glycomics.
    Keywords:  Cancer cells; Electrochemical biosensors; Exosomes; Glycan analysis; Glycosylation
    DOI:  https://doi.org/10.1016/j.aca.2024.343277
  3. Heliyon. 2024 Dec 30. 10(24): e40940
      Extracellular vesicles (EVs) show great potential for therapeutic delivery to human cells, with a focus on modulating immune responses. The most promising targets for inducing humoral and cellular immunity against a specific antigen are macrophages (Mϕs) and dendritic cells (DCs). Targeting mannose receptors (CD206), which are highly expressed on these antigen-presenting cells, to promote the presentation of specific antigens through EV-mediated uptake, is a promising strategy in clinical immunotherapy. Our study compares two EV-fused anti-CD206 nanobodies in delivering cargo proteins to human activated antigen-presenting cells. We demonstrated that nanobody-functionalized EVs exhibit enhanced interaction and increased uptake by CD206+ cells compared to non-targeted EVs. Furthermore, replacing the full-length vesicular stomatitis virus protein G (VSV-G) with its truncated form, fused to a monoclonal anti-CD206 nanobody, significantly improves the specificity of EV uptake by CD206+ cells. Our study outlines an optimized platform for the production of targeted EVs designed for specific protein delivery to CD206-positive human cells.
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e40940
  4. J Drug Target. 2025 Jan 08. 1-12
      Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
    Keywords:  Exosome therapy; cancer invasion; colorectal metastasis; nanoimmunotherapy; tumour resistance
    DOI:  https://doi.org/10.1080/1061186X.2024.2449482
  5. Pharmaceutics. 2024 Nov 21. pii: 1492. [Epub ahead of print]16(12):
      Ischemic stroke (IS) remains a leading cause of mortality and long-term disability worldwide, with limited therapeutic options available. Despite the success of early interventions, such as tissue-type plasminogen activator administration and mechanical thrombectomy, many patients continue to experience persistent neurological deficits. The pathophysiology of IS is multifaceted, encompassing excitotoxicity, oxidative and nitrosative stress, inflammation, and blood-brain barrier disruption, all of which contribute to neural cell death, further complicating the treatment of IS. Recently, extracellular vesicles (EVs) secreted naturally by various cell types have emerged as promising therapeutic agents because of their ability to facilitate selective cell-to-cell communication, neuroprotection, and tissue regeneration. Furthermore, engineered EVs, designed to enhance targeted delivery and therapeutic cargo, hold the potential to improve their therapeutic benefits by mitigating neuronal damage and promoting neurogenesis and angiogenesis. This review summarizes the characteristics of EVs, the molecular mechanisms underlying IS pathophysiology, and the emerging role of EVs in IS treatment at the molecular level. This review also explores the recent advancements in EV engineering, including the incorporation of specific proteins, RNAs, or pharmacological agents into EVs to enhance their therapeutic efficacy.
    Keywords:  extracellular vesicle engineering; extracellular vesicles; ischemic stroke; pathophysiology
    DOI:  https://doi.org/10.3390/pharmaceutics16121492