bims-engexo Biomed News
on Engineered exosomes
Issue of 2024–11–24
seven papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Mol Biomed. 2024 Nov 21. 5(1): 60
      Extracellular vesicles (EVs) are cell-derived vesicles with a phospholipid bilayer measuring 50-150 nm in diameter with demonstrated therapeutic potentials. Limitations such as the natural biodistribution (mainly concentrated in the liver and spleen) and short plasma half-life of EVs present significant challenges to their clinical translation. In recent years, growing research indicated that engineered EVs with enhanced targeting to lesion sites have markedly promoted therapeutic efficacy. However, there is a dearth of systematic knowledge on the recent advances in engineering EVs for targeted delivery. Herein, we provide an overview of the targeting mechanisms, engineering techniques, and clinical translations of natural and engineered EVs in therapeutic applications. Enrichment of EVs at lesion sites may be achieved through the recognition of tissue markers, pathological changes, and the circumvention of mononuclear phagocyte system (MPS). Alternatively, external stimuli, including magnetic fields and ultrasound, may also be employed. EV engineering techniques that fulfill targeting functions includes genetic engineering, membrane fusion, chemical modification and physical modification. A comparative statistical analysis was conducted to elucidate the discrepancies between the diverse techniques on size, morphology, stability, targeting and therapeutic efficacy in vitro and in vivo. Additionally, a summary of the registered clinical trials utilizing EVs from 2010 to 2023 has been provided, with a full discussion on the perspectives. This review provides a comprehensive overview of the mechanisms and techniques associated with targeted delivery of EVs in therapeutic applications to advocate further explorations of engineered EVs and accelerate their clinical applications.
    Keywords:  Clinical translation; EV engineering technique; Engineered extracellular vesicles; Exosome; Extracellular vesicles; Targeted delivery; Targeting mechanism
    DOI:  https://doi.org/10.1186/s43556-024-00230-x
  2. Stem Cell Res Ther. 2024 Nov 22. 15(1): 449
      Cancer stem cells (CSCs) represent a small yet pivotal subset of tumor cells endowed with self-renewal capabilities. These cells are intricately linked to tumor progression and are central to drug resistance, metastasis, and recurrence. The tumor microenvironment (TME) encompasses the cancer cells and their surrounding milieu, including immune and inflammatory cells, cancer-associated fibroblasts, adjacent stromal tissues, tumor vasculature, and a variety of cytokines and chemokines. Within the TME, cells such as immune and inflammatory cells, endothelial cells, adipocytes, and fibroblasts release growth factors, cytokines, chemokines, and exosomes, which can either sustain or disrupt CSCs, thereby influencing tumor progression. Conversely, CSCs can also secrete cytokines, chemokines, and exosomes, affecting various components of the TME. Exosomes, a subset of extracellular vesicles (EVs), carry a complex cargo of nucleic acids, proteins, and lipids, playing a crucial role in the communication between CSCs and the TME. This review primarily focuses on the impact of exosomes secreted by CSCs (CSC-exo) on tumor progression, including their roles in maintaining stemness, promoting angiogenesis, facilitating metastasis, inducing immune suppression, and contributing to drug resistance. Additionally, we discuss how exosomes secreted by different cells within the TME affect CSCs. Finally, we explore the potential of utilizing exosomes to mitigate the detrimental effects of CSCs or to target and eliminate them. A thorough understanding of the exosome-mediated crosstalk between CSCs and the TME could provide valuable insights for developing targeted therapies against CSCs.
    Keywords:  Cancer stem cells; Cancer treatment; Exosomes; Extracellular vesicles; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s13287-024-04061-z
  3. Adv Healthc Mater. 2024 Nov 18. e2403315
      Cartilage endplate cell (CEPC) and nucleus pulposus cell (NPC) inflammation are critical factors that contribute to intervertebral disc degeneration (IVDD). Recent evidence indicated that iron ion influx, reactive oxygen species (ROS), and the cGAS-STING pathway are involved in CEPC inflammatory degeneration. Moreover, cytokines produced by degenerating CEPCs and lactic acid accumulation within the microenvironment significantly contribute to NPC inflammation. Consequently, simultaneous alleviation of CEPC inflammation and correction of the acidic microenvironment are anticipated to reverse IVDD. Herein, CEPC-targeted engineered exosomes loaded with salvianolic acid A are incorporated into a CaCO3/chitosan hydrogel, forming a composite gel, CAP-sEXOs@Gel. Notably, CAP-sEXOs@Gel shows long local retention, realizes the slow release of CAP-sEXOs and specific uptake by CEPCs. After uptake by CEPCs, CAP-sEXOs reduce intracellular iron ion and ROS by inhibiting hypoxia-inducible factor-2α (HIF-2α)/TfR1 expression. Iron ion influx and ROS inhibition contribute to the maintenance of normal mitochondrial function and reduced mtDNA leakage, suppresing the cGAS-STING pathway. Additionally, the CaCO3 component of CAP-sEXOs@Gel neutralizes H+, thereby alleviating NPC inflammation. Collectively, this novel composite hydrogel demonstrates the ability to concurrently inhibit CEPC and NPC inflammation, thereby presenting a promising therapeutic approach for IVDD.
    Keywords:  cartilage endplate targeting; engineered exosome; hydrogel; inflammaging; intervertebral disc degeneration
    DOI:  https://doi.org/10.1002/adhm.202403315
  4. Hematology. 2024 Dec;29(1): 2428482
       OBJECTIVE: Acute myeloid leukemia (AML) stands out as a malignancy of the stem cell precursors of the myeloid lineage. Bone-marrow mesenchymal stem cell-derived exosomes (BMSC-exos) affect AML progression. We explored the effects and mechanism of BMSC-exos on AML cell proliferation and apoptosis.
    METHODS: Human AML cells (MOLM-16, MV-4-11) and normal human hematopoietic cells (GM12878) cultured in vitro were treated with exos extracted from BMSCs that transfected with microRNA (miR)-139-5p-mimics, ovβ-catenin, or miR-139-5p-inhibitor. BMSC morphology was observed by a microscopy, and its adipogenic and osteogenic differentiation abilities were assessed by oil red O staining and alizarin red S staining. BMSC-exos were extracted by ultracentrifugation, and their morphology was observed by a transmission electron microscopy. BMSC-exos were identified by nanoparticle tracking analysis and Western blot. The binding sites between miR-139-5p and β-catenin were predicted by TargetScan database, and then validated by dual-luciferase reporter assay. mRNA levels of miR-139-5p and β-catenin, cell proliferation, and apoptosis were evaluated by RT-qPCR, CCK-8, and flow cytometry. The expressions of CD63, CD81, TSG101, and GRP94 and the proteins of β-catenin, Bax, and Bcl-2 were determined by Western blot.
    RESULTS: miR-139-5p was poorly expressed in AML cell lines. miR-139-5p overexpression reduced AML cell viability/proliferation/Bcl-2 level, and raised apoptosis/Bax level. BMSC-exos repressed AML cell proliferation and promoted apoptosis via miR-139-5p. miR-139-5p targeted to inhibit β-catenin expression. Subsequently, up-regulated β-catenin partially counteracted the effects of miR-139-5p in BMSC-exos on AML cell proliferation and apoptosis.
    CONCLUSION: BMSC-exos targeted to repress β-catenin expression by miR-139-5p, limited AML cell proliferation and facilitated apoptosis.
    Keywords:  Acute myeloid leukemia; apoptosis; bone-marrow mesenchymal stem cells; cell proliferation; dual-luciferase reporter assay; exosomes; microRNA-139-5p; Β-catenin
    DOI:  https://doi.org/10.1080/16078454.2024.2428482
  5. Adv Healthc Mater. 2024 Nov 17. e2402909
      Aging impairs bone marrow mesenchymal stem cell (BMSC) functions as well as associated angiogenesis which is critical for bone regeneration and repair. Hence, repairing bone defects in elderly patients poses a formidable challenge in regenerative medicine. Here, the engineered dental pulp stem cell-derived exosomes loaded with the natural derivative of adenosine Cordycepin (CY@D-exos) are fabricated by means of the intermittent ultrasonic shock, which dually rejuvenates both senescent BMSCs and endothelial cells and significantly improve bone regeneration and repair in aged animals. CY@D-exos can efficiently overcome the senescence of aged BMSCs and enhance their osteogenic differentiation by activating NRF2 signaling and maintaining heterochromatin stability. Importantly, CY@D-exos also potently overcomes the senescence of vascular endothelial cells and promotes angiogenesis. In vivo injectable gelatin methacryloyl (GelMA) hydrogels with sustained release of CY@D-exos can accelerate bone injury repair and promote new blood vessel formation in aged animals. Taken together, these results thus demonstrate that cordycepin-loaded dental pulp stem cell-derived exosomes display considerable potential to be developed as a next-generation therapeutic agent for promoting aged bone regeneration and repair.
    Keywords:  aged bone regeneration; cordycepin; engineered exosomes; nuclear factor erythroid 2‐related factor; senescence
    DOI:  https://doi.org/10.1002/adhm.202402909
  6. Am J Sports Med. 2024 Nov 20. 3635465241296141
       BACKGROUND: The insufficient regeneration of fibrocartilage at the tendon enthesis is the primary cause of retearing after surgical reattachment of the rotator cuff. Exosomes derived from bone marrow-derived mesenchymal stem cells (BMSC-Exos) and kartogenin (KGN) have been demonstrated to induce fibrocartilage formation. Loading drugs into exosomes may lead to a synergistic effect, significantly enhancing the inherent activity of both components. However, further investigation is necessary to determine whether loading KGN into BMSC-Exos could yield superior efficacy in promoting tendon enthesis healing.
    PURPOSE: To study the effect and mechanism of KGN-loaded BMSC-Exos (Kl-BMSC-Exos) on tendon enthesis repair and biomechanical properties in a rat rotator cuff injury (RCI) model.
    STUDY DESIGN: Controlled laboratory study.
    METHODS: The characteristics and in vivo retention of exosomes were demonstrated using nanoflow cytometry, transmission electron microscopy, and in vivo imaging of a small animal. The differentiation markers of BMSCs were assessed through quantitative polymerase chain reaction and immunofluorescence assays. Unilateral supraspinatus tenotomy and repair were performed in rats to establish the RCI model. Gelatin sponges were utilized to contain and deliver exosomes. In total, 44 rats were randomly assigned to 4 groups: sham, RCI, BMSC-Exos, and Kl-BMSC-Exos. Tendon enthesis regeneration and biomechanical properties were evaluated 8 weeks after surgery. RNA sequencing of BMSCs was performed to elucidate the underlying mechanism through which Kl-BMSC-Exos enhance tendon enthesis healing.
    RESULTS: No discernible disparities in fundamental characteristics were evident between BMSC-Exos and Kl-BMSC-Exos. Incorporating exosomes into a gelatin sponge extended the in vivo retention time from 7 to 14 days. Kl-BMSC-Exos were more effective in inducing differentiation markers of BMSCs, improving fibrocartilage regeneration, organizing collagen fiber arrangement, and enhancing the biomechanical properties of tendon enthesis. Furthermore, transcriptomics suggested that Mospd1 was involved in Kl-BMSC-Exos-mediated tendon enthesis healing by enhancing fibrocartilage regeneration.
    CONCLUSION: The incorporation of exosomes into a gelatin sponge significantly enhances their in vivo retention time. Kl-BMSC-Exos can expedite the healing of RCI by enhancing chondrogenesis and fibrocartilage regeneration, providing more organized collagen fiber arrangement and superior biomechanical properties of the rotator cuff enthesis. The promotion of rotator cuff enthesis regeneration may contribute to enhancing the chondrogenic potential in BMSCs through Kl-BMSC-Exos-mediated upregulation of Mospd1.
    CLINICAL RELEVANCE: As a cell-free therapeutic approach, Kl-BMSC-Exos displayed a better therapeutic effect on tendon enthesis healing than BMSC-Exos did, and these can be used as a biologic augmentation to enhance the healing of rotator cuff enthesis.
    Keywords:  KGN; drug loading; exosomes; rotator cuff; tendon enthesis healing.
    DOI:  https://doi.org/10.1177/03635465241296141
  7. Biol Reprod. 2024 Nov 19. pii: ioae170. [Epub ahead of print]
      Extracellular vesicles, particularly exosomes, play a pivotal role in the cellular mechanisms underlying cancer. This review explores the various functions of exosomes in the progression, growth, and metastasis of cancers affecting the male and female reproductive systems. Exosomes are identified as key mediators in intercellular communication, capable of transferring bioactive molecules such as miRNAs, proteins, and other nucleic acids that influence cancer cell behavior and tumor microenvironment interactions. It has been shown that nc-RNAs transported by exosomes play an important role in tumor growth processes. Significant molecules that may serve as biomarkers in the development and progression of male reproductive cancers include miR-125a-5p, miR-21, miR-375, the miR-371 ~ 373 cluster, and miR-145-5p. For female reproductive cancers, significant miRNAs include miR-26a-5p, miR-148b, miR-205, and miRNA-423-3p. This review highlights the potential of these ncRNAs as biomarkers and prognostics in tumor diagnostics. Understanding the diverse roles of exosomes may hold promise for developing new therapeutic strategies and improving treatment outcomes for cancer patients.
    Keywords:  Cancers; Exosomes; Extracellular vesicles; Microrna; Reproduction; Reproductive cancers
    DOI:  https://doi.org/10.1093/biolre/ioae170