bims-engexo Biomed News
on Engineered exosomes
Issue of 2024–09–22
ten papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Front Immunol. 2024 ;15 1444437
      The delivery of CRISPR/Cas systems holds immense potential for revolutionizing cancer treatment, with recent advancements focusing on extracellular vesicles (EVs) and viral vectors. EVs, particularly exosomes, offer promising opportunities for targeted therapy due to their natural cargo transport capabilities. Engineered EVs have shown efficacy in delivering CRISPR/Cas components to tumor cells, resulting in inhibited cancer cell proliferation and enhanced chemotherapy sensitivity. However, challenges such as off-target effects and immune responses remain significant hurdles. Viral vectors, including adeno-associated viruses (AAVs) and adenoviral vectors (AdVs), represent robust delivery platforms for CRISPR/Cas systems. AAVs, known for their safety profile, have already been employed in clinical trials for gene therapy, demonstrating their potential in cancer treatment. AdVs, capable of infecting both dividing and non-dividing cells, offer versatility in CRISPR/Cas delivery for disease modeling and drug discovery. Despite their efficacy, viral vectors present several challenges, including immune responses and off-target effects. Future directions entail refining delivery systems to enhance specificity and minimize adverse effects, heralding personalized and effective CRISPR/Cas-mediated cancer therapies. This article underscores the importance of optimized delivery mechanisms in realizing the full therapeutic potential of CRISPR/Cas technology in oncology. As the field progresses, addressing these challenges will be pivotal for translating CRISPR/Cas-mediated cancer treatments from bench to bedside.
    Keywords:  CRiSPR/Cas; cancer treatment; exosomes; extracellular vesicle; viral vectors
    DOI:  https://doi.org/10.3389/fimmu.2024.1444437
  2. RSC Adv. 2024 Sep 12. 14(40): 29106-29112
      Colicins are antimicrobial proteins produced by certain strains of Escherichia coli that function as offensive weapons against closely-related competitor strains. Their bactericidal properties and narrow bacterial targeting range has made them of therapeutic interest. Furthermore, the applications of engineered non-bactericidal colicins are of interest as a cell surface-directed protein anchor for decorating E. coli with biomolecules. We previously demonstrated that an engineered non-bacteriocidal colicin E9 could be used to label bacterial cells with multiple biomolecules including glycans. Herein we extend our approach to colicin Ia, constructing mannose-presenting colicin la neoglycoproteins, through N-terminal organocatalyst-mediated protein aldol ligation (OPAL), or maleimide ligation targeting an internal cysteine. This work further highlights the potential utility of engineered colicins for non-genetic glyco-engineering of the E. coli cell surface.
    DOI:  https://doi.org/10.1039/d4ra04774e
  3. Front Endocrinol (Lausanne). 2024 ;15 1439351
       Background: Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated β-cells or systemic delivery of viral vectors.
    Methods: We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice.
    Result: Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during in vitro culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice.
    Conclusion: In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival in vivo. The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.
    Keywords:  CRISPR/Cas9; IRES; diabetes; insulin-producing cells; promoter-free
    DOI:  https://doi.org/10.3389/fendo.2024.1439351
  4. Biotechnol Prog. 2024 Sep 15. e3509
      Alkanes are high-energy hydrocarbons that are foreseen as next generation biofuels. Cyanobacteria are known to naturally synthesize C15-C19 alkanes; however, the titers are too low to make this a commercially viable process. Therefore, to leverage these photosynthetic platforms for improved alkane production, here we engineered three novel isolates of Synechococcus elongatus PCC 11801, PCC 11802, and IITB6. The two gene AAR-ADO alkane biosynthesis pathway was constructed by cloning the genes for acyl-ACP reductase (aar) and aldehyde deformylating oxygenase (ado) from S. elongatus PCC 7942 under the regulation of PrbcL promoter from PCC 7942 and native promoters from PCC 11801 such as PcpcB300, PpsbAI, and PpsbAIII. The genes were separately cloned under two different promoters, creating a library of the engineered strains. The results indicated that the engineered strains of novel S. elongatus isolates produced significantly higher amounts of alkanes than the model strain PCC 7942. The highest alkane yield achieved was 4.1 mg/gDCW in BG-11, while the highest titer was 31.5 mg/L in 5X BG-11, with an engineered IITB6 strain (PcpcB300:aar:TrrnB::PrbcL:ado:TLac). Overall, the study highlights the potential of newly isolated S. elongatus strains as efficient alkane production platforms.
    DOI:  https://doi.org/10.1002/btpr.3509
  5. Adv Mater. 2024 Sep 19. e2412253
      Persistent excessive inflammation caused by neutrophil and macrophage dysfunction in the wound bed leads to refractory response during wound healing. However, previous studies using cytokines or drugs often suffer from short half-lives and limited targeting, resulting in unsatisfactory therapeutic effects. Herein, the enucleated mesenchymal stem cell is engineered by aptamer bioorthogonal chemistry to modify the cell membrane and mRNA loading in the cell cytoplasm as a novel delivery vector (Cargocyte) with accurate targeting and sustained cytokine secretion. Cargocytes can successfully reduce NETosis by targeting the nuclear chromatin protein DEK protein with aptamers and sustaining interleukin (IL)-4 expression to overcome the challenges associated with the high cost and short half-life of IL-4 protein and significantly prevent the transition of macrophages into the M1 phenotype. Therapeutic effects have been demonstrated in murine and porcine wound models and have powerful potential to improve wound immune microenvironments effectively. Overall, the use of engineered enucleated mesenchymal stem cells as a delivery system may be a promising approach for wound healing.
    Keywords:  DEK; NETosis; bioorthogonal chemistry; engineered enucleated mesenchymal stem cells; macrophage; wound healing
    DOI:  https://doi.org/10.1002/adma.202412253
  6. Front Microbiol. 2024 ;15 1399632
       Introduction: Diabetic nephropathy (DN) presents a significant therapeutic challenge, compounded by complex pathophysiological mechanisms. Recent studies suggest Exendin-4 (Ex-4) as a potential ameliorative agent for DN, albeit with unclear mechanisms. This research investigates the effects and underlying mechanisms of Ex-4-enriched exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) on DN, focusing on their renoprotective properties and interactions with gut microbiota.
    Method: Exosomes from hUCMSCs (hUCMSCs-Exo) were loaded with Ex-4 via electroporation. A streptozotocin (STZ) -induced DN mouse model was employed to assess the therapeutic impact of these engineered exosomes. The study further explored immune cell dynamics, mainly CD4+ regulatory T (Treg) cells, using bioinformatics, flow cytometry, and the influence of gut microbiota through antibiotic treatment and specific bacterial reintroduction.
    Results: Treatment with hUCMSCs-Exo@Ex-4 significantly improved key DN markers, including blood glucose and proteinuria, alleviating kidney damage. A notable decrease in natural Treg cell infiltration in DN was observed, while Ex-4-loaded exosomes promoted CD4+ Treg cell induction. The therapeutic benefits of hUCMSCs-Exo@Ex-4 were diminished upon CD4+ Treg cell depletion, underscoring their role in this context. Notably, CD4+ Treg cell induction correlated with the presence of Prevotella species, and disruption of gut microbiota adversely affected these cells and the therapeutic efficacy of the treatment. However, the reintroduction of Prevotella strains counteracted these adverse effects.
    Discussion: This study elucidates a novel therapeutic mechanism of Ex-4-loaded hUCMSCs exosomes in DN, highlighting the induction of CD4+ Treg cells mediated by specific gut microbiota components. These findings underscore the potential of leveraging gut microbiota and immune cell interplay in developing effective DN treatments.
    Keywords:  CD4 + regulatory T cells; Prevotella; diabetic nephropathy; gut microbiota metabolism; human umbilical cord mesenchymal stem cells; kidney injury
    DOI:  https://doi.org/10.3389/fmicb.2024.1399632
  7. ACS Nano. 2024 Sep 17.
      The antibacterial efficacy and specificity of lytic bacteriophages (phages) make them promising therapeutics for treatment of multidrug-resistant bacterial infections. Restricted penetration of phages through the protective matrix of biofilms, however, may limit their efficacy against biofilm infections. Here, engineered polymers were used to generate noncovalent phage-polymer nanoassemblies (PPNs) that penetrate bacterial biofilms and kill resident bacteria. Phage K, active against multiple strains of Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), was assembled with cationic poly(oxanorbornene) polymers into PPNs. The PPNs retained phage infectivity, while demonstrating enhanced biofilm penetration and killing relative to free phages. PPNs achieved 3-log10 bacterial reduction (∼99.9%) against MRSA biofilms in vitro. PPNs were then incorporated into Poloxamer 407 (P407) hydrogels and applied onto in vivo wound biofilms, demonstrating controlled and sustained release. Hydrogel-incorporated PPNs were effective in a murine MRSA wound biofilm model, showing a 1.5-log10 reduction in bacterial load compared to a 0.5 log reduction with phage K in P407 hydrogel. Overall, this work showcases the therapeutic potential of phage K engineered with cationic polymers for treating wound biofilm infections.
    Keywords:  biofilm penetrations; biofilms; nanotherapeutics; phage therapy; polymers
    DOI:  https://doi.org/10.1021/acsnano.4c08671
  8. Front Immunol. 2024 ;15 1457629
      Induced pluripotent stem cells (iPSCs) have emerged as a revolutionary tool in cell therapies due to their ability to differentiate into various cell types, unlimited supply, and potential as off-the-shelf cell products. New advances in iPSC-derived immune cells have generated potent iNK and iT cells which showed robust killing of cancer cells in animal models and clinical trials. With the advent of advanced genome editing technologies that enable the development of highly engineered cells, here we outline 12 strategies to engineer iPSCs to overcome limitations and challenges of current cell-based immunotherapies, including safety switches, stealth edits, avoiding graft-versus-host disease (GvHD), targeting, reduced lymphodepletion, efficient differentiation, increased in vivo persistence, stemness, metabolic fitness, homing/trafficking, and overcoming suppressive tumor microenvironment and stromal cell barrier. With the development of advanced genome editing techniques, it is now possible to insert large DNA sequences into precise genomic locations without the need for DNA double strand breaks, enabling the potential for multiplexed knock out and insertion. These technological breakthroughs have made it possible to engineer complex cell therapy products at unprecedented speed and efficiency. The combination of iPSC derived iNK, iT and advanced gene editing techniques provides new opportunities and could lead to a new era for next generation of cell immunotherapies.
    Keywords:  differentiation; engineering strategies; iNK; iPSC; iT; next generation immunotherapy
    DOI:  https://doi.org/10.3389/fimmu.2024.1457629
  9. Protein Eng Des Sel. 2024 Sep 14. pii: gzae014. [Epub ahead of print]
      Antibodies play a crucial role in monitoring post-translational modifications, like phosphorylation, which regulates protein activity and location; however, commercial polyclonal and monoclonal antibodies have limitations in renewability and engineering compared to recombinant affinity reagents. A scaffold based on the Forkhead-associated domain (FHA) has potential as a selective affinity reagent for this post-translational modification. Engineered FHA domains, termed phosphothreonine-binding domains (pTBDs), with limited cross-reactivity were isolated from an M13 bacteriophage display library by affinity selection with phosphopeptides corresponding to human mTOR, Chk2, 53BP1, and Akt1 proteins. To determine the specificity of the representative pTBDs, we focused on binders to the pT543 phosphopeptide (536-IDEDGENpTQIEDTEP-551) of the DNA repair protein 53BP1. ELISA and western blot experiments have demonstrated the pTBDs are specific to phosphothreonine, demonstrating the potential utility of pTBDs for monitoring the phosphorylation of specific threonine residues in clinically relevant human proteins.
    Keywords:  53BP1; Akt1; Chk2; FHA domain; affinity selection; library; mTOR; phosphoepitope; phosphopeptide; phosphoserine; phosphothreonine; sortase
    DOI:  https://doi.org/10.1093/protein/gzae014
  10. J Bacteriol. 2024 Sep 18. e0014224
      The increase in antibiotic resistance in bacteria has prompted the efforts in developing new alternative strategies for pathogenic bacteria. We explored the feasibility of targeting Vibrio cholerae by neutralizing bacterial cellular processes rather than outright killing the pathogen. We investigated the efficacy of delivering engineered regulatory small RNAs (sRNAs) to modulate gene expression through DNA conjugation. As a proof of concept, we engineered several sRNAs targeting the type VI secretion system (T6SS), several of which were able to successfully knockdown the T6SS activity at different degrees. Using the same strategy, we modulated exopolysaccharide production and motility. Lastly, we delivered an sRNA targeting T6SS into V. cholerae via conjugation and observed a rapid knockdown of the T6SS activity. Coupling conjugation with engineered sRNAs represents a novel way of modulating gene expression in V. cholerae opening the door for the development of novel prophylactic and therapeutic applications.
    IMPORTANCE: Given the prevalence of antibiotic resistance, there is an increasing need to develop alternative approaches to managing pathogenic bacteria. In this work, we explore the feasibility of modulating the expression of various cellular systems in Vibrio cholerae using engineered regulatory sRNAs delivered into cells via DNA conjugation. These sRNAs are based on regulatory sRNAs found in V. cholerae and exploit its native regulatory machinery. By delivering these sRNAs conjugatively along with a real-time marker for DNA transfer, we found that complete knockdown of a targeted cellular system could be achieved within one cell division cycle after sRNA gene delivery. These results indicate that conjugative delivery of engineered regulatory sRNAs is a rapid and robust way of precisely targeting V. cholerae.
    Keywords:  T6SS; V. cholerae; conjugation; modulation gene expression; sRNAs
    DOI:  https://doi.org/10.1128/jb.00142-24