bims-engexo Biomed News
on Engineered exosomes
Issue of 2024–08–11
five papers selected by
Ravindran Jaganathan, Universiti Kuala Lumpur



  1. Sci Transl Med. 2024 Aug 07. 16(759): eadi4830
      Effective intracellular delivery of therapeutic proteins can potentially treat a wide array of diseases. However, efficient delivery of functional proteins across the cell membrane remains challenging. Exosomes are nanosized vesicles naturally secreted by various types of cells and may serve as promising nanocarriers for therapeutic biomolecules. Here, we engineered exosomes equipped with a photoinducible cargo protein release system, termed mMaple3-mediated protein loading into and release from exosome (MAPLEX), in which cargo proteins can be loaded into the exosomes by fusing them with photocleavable protein (mMaple3)-conjugated exosomal membrane markers and subsequently released from the exosomal membrane by inducing photocleavage with blue light illumination. Using this system, we first induced transcriptional regulation by delivering octamer-binding transcription factor 4 and SRY-box transcription factor 2 to fibroblasts in vitro. Second, we induced in vivo gene recombination in Cre reporter mice by delivering Cre recombinase. Last, we achieved targeted epigenome editing in the brains of 5xFAD and 3xTg-AD mice, two models of Alzheimer's disease. Administration of MAPLEXs loaded with β-site amyloid precursor protein cleaving enzyme 1 (Bace1)-targeting single guide RNA-incorporated dCas9 ribonucleoprotein complexes, coupled with the catalytic domain of DNA methyltransferase 3A, resulted in successful methylation of the targeted CpG sites within the Bace1 promoter. This approach led to a significant reduction in Bace1 expression, improved recognition memory impairment, and reduced amyloid pathology in 5xFAD and 3xTg-AD mice. These results suggest that MAPLEX is an efficient intracellular protein delivery system that can deliver diverse therapeutic proteins for multiple diseases.
    DOI:  https://doi.org/10.1126/scitranslmed.adi4830
  2. J Transl Med. 2024 Aug 05. 22(1): 728
      Cancer remains a leading cause of global mortality. The tumor microbiota has increasingly been recognized as a key regulator of cancer onset and progression, in addition to shaping tumor responses to immunotherapy. Microbes, including viruses, bacteria, fungi, and other eukaryotic species can impact the internal homeostasis and health of humans. Research focused on the gut microflora and the intratumoral microbiome has revolutionized the current understanding of how tumors grow, progress, and resist therapeutic interventions. Even with this research, however, there remains relatively little that is known with respect to the abundance of microbes and their effects on tumors and the tumor microenvironment. Engineered exosomes are a class of artificial extracellular nanovesicles that can actively transport small molecule drugs and nucleic acids, which have the broad prospects of tumor cell therapy. The present review offers an overview of recent progress and challenges associated with the intratumoral microbiome and engineered exosomes in the context of cancer research. These discussions are used to inform the construction of a novel framework for engineered exosome-mediated targeted drug delivery, taking advantage of intratumoral microbiota diversity as a strategic asset and thereby providing new opportunities to more effectively treat and manage cancer in the clinic.
    Keywords:  Cancer; Engineering exosomes; Intratumoral Microbiota; Treatment; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s12967-024-05531-x
  3. Am J Cancer Res. 2024 ;14(7): 3335-3347
      In this study, we constructed engineered exosomes carrying the long non-coding RNA (lncRNA) SVIL-AS1 (SVIL-AS1 Exos), and explored its role and mechanism in lung cancer. After the construction of SVIL-AS1 Exos, their physicochemical characteristics were identified. Then, their function and effect in three different cell lines, A549, HeLa, and HepG2, were detected using western blot, the quantitative reverse transcriptase polymerase chain reaction, flow cytometry, 5-ethynyl-2'-deoxyuridine, and Cell Counting Kit-8 experiments. Finally, a mouse xenograft model was constructed to analyze tumor growth and explore the in vivo utility of SVIL-AS1 Exos using hematoxylin and eosin staining, immunohistochemistry, and the TdT-mediated dUTP nick end labeling assay. The results demonstrated that SVIL-AS1 Exos preferentially targeted A549 lung cancer cells over HeLa and HepG2 cells. SVIL-AS1 Exos promoted apoptosis and inhibited A549 cell proliferation by elevating expression of the lncRNA, SVIL-AS1. In vivo, SVIL-AS1 Exos effectively inhibited the growth of lung cancer A549 cells. Furthermore, SVIL-AS1 Exos suppressed the expression of miR-21-5p and upregulated the expression of caspase-9, indicating that SVIL-AS1 may regulate the development of lung cancer through the miR-21-5p/caspase-9 pathway. In conclusion, the engineered SVIL-AS1 Exos targeted lung cancer cells to inhibit the expression of miR-21-5p, upregulate the expression of caspase-9, and inhibit the development of lung cancer.
    Keywords:  Engineered exosomes; LncRNA SVIL-AS1; lung cancer; miR-21-5p
    DOI:  https://doi.org/10.62347/YRJK5888
  4. J Inflamm Res. 2024 ;17 5093-5112
       Background: Sepsis continues to exert a significant impact on morbidity and mortality in clinical settings, with immunosuppression, multi-organ failure, and disruptions in gut microbiota being key features. Although rheinic acid and tanshinone IIA show promise in mitigating macrophage apoptosis in sepsis treatment, their precise targeting of macrophages remains limited. Additionally, the evaluation of intestinal flora changes following treatment, which plays a significant role in subsequent cytokine storms, has been overlooked. Leveraging the innate inflammation chemotaxis of tumor cell-derived exosomes allows for their rapid recognition and uptake by activated macrophages, facilitating phenotypic changes and harnessing anti-inflammatory effects.
    Methods: We extracted exosomes from H1299 cells using a precipitation method. Then we developed a tumor cell-derived exosomal hybrid nanosystem loaded with rhubarbic acid and tanshinone IIA (R+T/Lipo/EXO) for sepsis treatment. In vitro studies, we verify the anti-inflammatory effect and the mechanism of inhibiting cell apoptosis of nano drug delivery system. The anti-inflammatory effects, safety, and modulation of intestinal microbiota by the nanoformulations were further validated in the in vivo study.
    Results: Nanoformulation demonstrated enhanced macrophage internalization, reduced TNF-α expression, inhibited apoptosis, modulated intestinal flora, and alleviated immunosuppression.
    Conclusion: R+T/Lipo/EXO presents a promising approach using exosomal hybrid nanosystems for treating sepsis.
    Keywords:  exosome; hybrid nanosystem; rheinic acid; sepsis; tanshinone IIA
    DOI:  https://doi.org/10.2147/JIR.S457978
  5. Mol Cell Biochem. 2024 Aug 07.
      The emergence of myofibroblasts is a key step in myocardial fibrosis, but the trigger for the transformation of cardiac fibroblasts into myofibroblasts remains not entirely clear. Exosomes play a key role between cardiomyocytes and cardiac fibroblasts. Here, we not only investigated the relationship between exosomes derived from angiotensin (Ang)-II-treated cardiomyocytes and cardiac fibroblasts, the underlying mechanisms were also explored. Ang-II-treated C57 male mice and mouse cardiac fibroblasts were employed for in vivo and in vitro experiments, respectively. Transmission electron microscopy nanoparticle tracking analysis, and western blot of CD9, CD63, CD81 were performed to identify exosomes; QRT-PCR was performed to detect miR-15a-5p expression; luciferase reporter assay was employed to determine the interaction between miR-15a-5p and dyrk2; western blot was performed to examine the protein levels of fibrosis markers; Counting Kit-8 was performed to determine cell viability; HE and Masson staining were performed to assess the pathological changes of myocardial tissues. MiR-15a-5p expression was found up-regulated in serum of myocardial fibrosis patients, serum and myocardial tissues of Ang-II-treated mice, and Ang-II-treated cardiomyocytes. Mechanically, exosomes from Ang-II-treated cardiomyocytes shuttled miR-15a-5p to cardiac fibroblasts, where miR-15a-5p dephosphorylated NFAT by targeting dyrk2 to promote cell viability and elevated the protein levels of α-smooth muscle actin, collagen type 1 α1 and collagen type 3 α1, thus promoting myocardial fibrosis. This study identified a novel molecular target for anti-fibrotic therapeutic interventions.
    Keywords:  Ang-II; Cardiac fibroblasts; Exosome; Myocardial fibrosis; dyrk2; miR-15a-5p
    DOI:  https://doi.org/10.1007/s11010-024-05080-3