bims-ectoca Biomed News
on Epigenetic control of tolerance in cancer
Issue of 2024–09–29
three papers selected by
Ankita Daiya, OneCell Diagnostics Inc.



  1. NPJ Genom Med. 2024 Sep 25. 9(1): 42
      Amplification of the MDM2 and CDK4 genes on chromosome 12 is commonly associated with low-grade osteosarcomas. In this study, we conducted high-resolution genomic and transcriptomic analyses on 33 samples from 25 osteosarcomas, encompassing both high- and low-grade cases with MDM2 and/or CDK4 amplification. We discerned four major subgroups, ranging from nearly intact genomes to heavily rearranged ones, each harbouring CDK4 and MDM2 amplification or CDK4 amplification with TP53 structural alterations. While amplicons involving MDM2 exhibited signs of an initial chromothripsis event, no evidence of chromothripsis was found in TP53-rearranged cases. Instead, the initial disruption of the TP53 locus led to co-amplification of the CDK4 locus. Additionally, we observed recurring promoter swapping events involving the regulatory regions of the FRS2, PLEKHA5, and TP53 genes. These events resulted in ectopic expression of partner genes, with the ELF1 gene being upregulated by the FRS2 and TP53 promoter regions in two distinct cases.
    DOI:  https://doi.org/10.1038/s41525-024-00430-y
  2. NAR Cancer. 2024 Sep;6(3): zcae037
      The p53 tumor suppressor gene governs a multitude of complex cellular processes that are essential for anti-cancer function and whose dysregulation leads to aberrant gene transcription, activation of oncogenic signaling and cancer development. Although mutations can occur at any point in the genetic sequence, missense mutations comprise the majority of observed p53 mutations in cancers regardless of whether the mutation is germline or somatic. One biological process involved in both mutant and wild-type p53 signaling is the N 6-methyladenosine (m6A) epitranscriptomic network, a type of post-transcriptional modification involved in over half of all eukaryotic mRNAs. Recently, a significant number of findings have demonstrated unique interactions between p53 and the m6A epitranscriptomic network in a variety of cancer types, shedding light on a previously uncharacterized connection that causes significant dysregulation. Cross-talk between wild-type or mutant p53 and the m6A readers, writers and erasers has been shown to impact cellular function and induce cancer formation by influencing various cancer hallmarks. Here, this review aims to summarize the complex interplay between the m6A epitranscriptome and p53 signaling pathway, highlighting its effects on tumorigenesis and other hallmarks of cancer, as well as identifying its therapeutic implications for the future.
    DOI:  https://doi.org/10.1093/narcan/zcae037
  3. Biochem Biophys Res Commun. 2024 Sep 19. pii: S0006-291X(24)01251-8. [Epub ahead of print]733 150715
      Post-translational modifications of histones play a crucial role in chromatin structure maintenance and epigenetic regulation. The LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscape) method represents a promising approach for tracking histone modifications. It involves visualization of epigenetic modifications using genetically encoded fluorescent sensors and further analysis of the obtained intranuclear patterns by multiparametric image analysis. In this study, we designed three new red fluorescent sensors-MPP8-Red, AF9-Red and DPF3-Red-for live-cell visualization of patterns of H3K9me3, H3K8ac and H3K4me1, respectively. The observed fluorescent patterns were visually distinguishable, and LiveMIEL analysis clearly classified them into three corresponding groups. We propose that these sensors can be used for live-cell dynamic analysis of changes in organization of three epigenetic types of chromatin.
    Keywords:  Epigenetics; Fluorescent proteins; Genetically encoded sensor; H3K4me1; H3K9ac; H3K9me3; Histone modification
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150715