bims-ectoca Biomed News
on Epigenetic control of tolerance in cancer
Issue of 2024‒04‒28
four papers selected by
Ankita Daiya, Birla Institute of Technology and Science



  1. Mitochondrion. 2024 Apr 21. pii: S1567-7249(24)00043-6. [Epub ahead of print]76 101885
      Mitochondria are the membrane-bound organelles producing energy for cellular metabolic processes. They orchestrate diverse cell signaling cascades regulating cellular homeostasis. This functional versatility may be attributed to their ability to regulate mitochondrial dynamics, biogenesis, and apoptosis. The Hippo pathway, a conserved signaling pathway, regulates various cellular processes, including mitochondrial functions. Through its effectors YAP and TAZ, the Hippo pathway regulates transcription factors and creates a seriatim process that mediates cellular metabolism, mitochondrial dynamics, and survival. Mitochondrial dynamics also potentially regulates Hippo signaling activation, indicating a bidirectional relationship between the two. This review outlines the interplay between the Hippo signaling components and the multifaceted role of mitochondria in cellular homeostasis under physiological and pathological conditions.
    Keywords:  Apoptosis; Hippo signaling; Mitochondrial biogenesis; Mitochondrial dynamics; Mitophagy; Oxidative stress
    DOI:  https://doi.org/10.1016/j.mito.2024.101885
  2. Cell Death Dis. 2024 Apr 24. 15(4): 290
      High-grade serous ovarian cancer (HGSOC) represents the most common and lethal subtype of ovarian cancer. Despite initial response to platinum-based standard therapy, patients commonly suffer from relapse that likely originates from drug-tolerant persister (DTP) cells. We generated isogenic clones of treatment-naïve and cisplatin-tolerant persister HGSOC cells. In addition, single-cell RNA sequencing of barcoded cells was performed in a xenograft model with HGSOC cell lines after platinum-based therapy. Published single-cell RNA-sequencing data from neo-adjuvant and non-treated HGSOC patients and patient data from TCGA were analyzed. DTP-derived cells exhibited morphological alterations and upregulation of epithelial-mesenchymal transition (EMT) markers. An aggressive subpopulation of DTP-derived cells showed high expression of the stress marker ATF3. Knockdown of ATF3 enhanced the sensitivity of aggressive DTP-derived cells to cisplatin-induced cell death, implying a role for ATF3 stress response in promoting a drug tolerant persister cell state. Furthermore, single cell lineage tracing to detect transcriptional changes in a HGSOC cell line-derived xenograft relapse model showed that cells derived from relapsed solid tumors express increased levels of EMT and multiple endoplasmic reticulum (ER) stress markers, including ATF3. Single cell RNA sequencing of epithelial cells from four HGSOC patients also identified a small cell population resembling DTP cells in all samples. Moreover, analysis of TCGA data from 259 HGSOC patients revealed a significant progression-free survival advantage for patients with low expression of the ATF3-associated partial EMT genes. These findings suggest that increased ATF3 expression together with partial EMT promote the development of aggressive DTP, and thereby relapse in HGSOC patients.
    DOI:  https://doi.org/10.1038/s41419-024-06674-x
  3. Biophys J. 2024 Apr 24. pii: S0006-3495(24)00282-0. [Epub ahead of print]
      Biomolecular condensates have emerged as a powerful new paradigm in cell biology with broad implications to human health and disease, particularly in the nucleus where phase separation is thought to underly elements of chromatin organization and regulation. Specifically, it has been recently reported that phase separation of heterochromatin protein 1alpha (HP1α) with DNA contributes to the formation of condensed chromatin states. HP1α localization to heterochromatic regions is mediated by its binding to specific repressive marks on the tail of histone H3, such as trimethylated lysine 9 on histone H3 (H3K9me3). However, whether epigenetic marks play an active role in modulating the material properties of HP1α and dictating emergent functions of its condensates, remains only partially understood. Here, we leverage a reductionist system, comprised of modified and unmodified histone H3 peptides, HP1α and DNA to examine the contribution of specific epigenetic marks to phase behavior of HP1α. We show that the presence of histone peptides bearing the repressive H3K9me3 is compatible with HP1α condensates, while peptides containing unmodified residues or bearing the transcriptional activation mark H3K4me3 are incompatible with HP1α phase separation. In addition, inspired by the decreased ratio of nuclear H3K9me3 to HP1α detected in cells exposed to uniaxial strain, using fluorescence microscopy and rheological approaches we demonstrate that H3K9me3 histone peptides modulate the dynamics and network properties of HP1α condensates in a concentration dependent manner. These data suggest that HP1α-DNA condensates are viscoelastic materials, whose properties may provide an explanation for the dynamic behavior of heterochromatin in cells in response to mechanostimulation.
    DOI:  https://doi.org/10.1016/j.bpj.2024.04.020
  4. Commun Biol. 2024 Apr 24. 7(1): 497
    Functional Genomics Centre
      Most lung cancer patients with metastatic cancer eventually relapse with drug-resistant disease following treatment and EGFR mutant lung cancer is no exception. Genome-wide CRISPR screens, to either knock out or overexpress all protein-coding genes in cancer cell lines, revealed the landscape of pathways that cause resistance to the EGFR inhibitors osimertinib or gefitinib in EGFR mutant lung cancer. Among the most recurrent resistance genes were those that regulate the Hippo pathway. Following osimertinib treatment a subpopulation of cancer cells are able to survive and over time develop stable resistance. These 'persister' cells can exploit non-genetic (transcriptional) programs that enable cancer cells to survive drug treatment. Using genetic and pharmacologic tools we identified Hippo signalling as an important non-genetic mechanism of cell survival following osimertinib treatment. Further, we show that combinatorial targeting of the Hippo pathway and EGFR is highly effective in EGFR mutant lung cancer cells and patient-derived organoids, suggesting a new therapeutic strategy for EGFR mutant lung cancer patients.
    DOI:  https://doi.org/10.1038/s42003-024-06190-w