ACS Biomater Sci Eng. 2024 Nov 25.
Advancing three-dimensional (3D) tissue constructs is central to creating in vitro models and engineered tissues that recapitulate biology. Materials that are permissive to cellular behaviors, including proliferation, morphogenesis of multicellular structures, and motility, will support the emergence of tissue structures. Granular hydrogels in which there is no interparticle cross-linking exhibit dynamic properties that may be permissive to such cellular behaviors. However, designing granular hydrogels that lack interparticle cross-linking but support cellular self-organization remains underexplored relative to granular systems stabilized by interparticle cross-linking. In this study, we developed a polyethylene glycol-based granular hydrogel system, with average particle diameters under 40 μm. This granular hydrogel exhibited bulk stress-relaxing behaviors and compatibility with custom microdevices to sustain cell cultures without degradation. The system was studied in conjunction with cocultures of endothelial cells and fibroblasts, known for their spontaneous network formation. Cross-linking, porosity, and cell-adhesive ligands (such as RGD) were manipulated to control system properties. Toward supporting cellular activity, increased porosity was found to enhance the formation of cellular networks, whereas RGD reduced network formation in the system studied. This research highlights the potential of un-cross-linked granular systems to support morphogenetic processes, like vasculogenesis and tissue maturation, offering insights into material design for 3D cell culture systems.
Keywords: cellular connectivity; endothelial cells; fibroblasts; granular hydrogels; microgels; morphogenesis; permissiveness