J Biomed Sci. 2026 Jan 06. 33(1):
8
The extracellular matrix (ECM) provides critical biochemical and biophysical cues that regulate cell behavior in health and disease. Collagens dominate in abundance and structural importance, shaping tissue-specific ECM signatures that guide cellular behavior. Two major and distinct transmembrane receptor families, integrins and discoidin domain receptors (DDRs), serve as primary sensors for collagens, yet they employ fundamentally distinct binding mechanisms and signaling kinetics. While both can activate shared downstream pathways, their functional interplay remains complex and context-dependent, with the potential to fine-tune cellular responses to ECM cues. This review deciphers the nuanced crosstalk between integrin β1 and DDRs, with a particular focus on the understudied DDR2, across physiological and pathological processes. We discuss how this interplay, which evolves from cooperative to compensatory or even antagonistic signaling, is influenced by variables, such as tissue specificity, developmental timing, and pathological context, dictating cell adhesion, migration, and ECM remodeling. Key examples include DDRs acting as allosteric regulators to license integrin activation, their partnership in mechanotransduction during development, and their divergent roles in aging tissues, where altered collagen mechanics shift the receptor hierarchy. In pathology, the DDR-integrin axis is pivotal in fibrosis and cancer, influencing fibroblast activation, drug resistance, metastatic outgrowth, and immune suppression within the tumor microenvironment. Notably, the receptors can function both independently and synergistically; for instance, DDR2 in cancer-associated fibroblasts regulates integrin-mediated mechanosignaling to promote metastasis, while in other contexts, both receptors activate distinct survival pathways. Understanding the signaling dynamics and mechanisms of these receptors is necessary for deciphering how cells interpret ECM signals and how these mechanisms contribute to disease progression, especially in those diseases marked by collagen remodeling. This comprehension is crucial for developing novel therapeutic strategies. Emerging evidence suggests that combined targeting DDRs and integrins can synergistically overcome ECM-mediated therapy resistance, enhance immune infiltration, and reprogram pathological microenvironments, offering a promising approach for treating fibrosis and collagen-rich cancers.
Keywords: Aging; Cancer; Collagen; Discoidin domain receptor (DDR) 1 and 2; Extracellular matrix (ECM); Fibrosis; Integrins; Targeted therapies; Tyrosine kinase receptor (TKR)