bims-drumid Biomed News
on Drugs for mitochondrial diseases
Issue of 2024–12–01
seven papers selected by
Volkmar Weissig, Midwestern University



  1. Biochem Pharmacol. 2024 Nov 26. pii: S0006-2952(24)00670-1. [Epub ahead of print] 116669
      Chronic kidney disease (CKD) is a multifactorial health issue characterised by kidney impairment that has significant morbidity and mortality in the global population. Current treatments for CKD fail to prevent progression to end-stage kidney disease, where management is limited to renal replacement therapy or kidney transplantation. Mitochondrial dysfunction has been implicated in the pathogenesis of CKD and can be broadly categorised into abnormalities related to excessive oxidative stress, reduced mitochondrial biogenesis, excess mitochondrial fission and dysregulated mitophagy. Mitochondria-targeting therapeutic strategies target many of the outlined mechanisms of mitochondrial dysfunction, and an overview of recent evidence for mitochondria-targeting therapeutic strategies is explored in this review, including naturally derived compounds and novel approaches such as fusion proteins. Mitochondria-targeting therapeutic strategies using these approaches show the potential to stabilise or improve renal function, and clinical studies are needed to further confirm the safety and efficacy in human contexts.
    Keywords:  Chronic kidney disease; Mitochondrial biogenesis; Mitochondrial dynamics; Mitochondrial dysfunction; Mitophagy; Oxidative stress
    DOI:  https://doi.org/10.1016/j.bcp.2024.116669
  2. J Alzheimers Dis. 2024 Nov 25. 13872877241295403
       BACKGROUND: Rapidly progressive Alzheimer's disease (rpAD) is a clinical subtype distinguished by its rapid cognitive decline and shorter disease duration. rpAD, like typical AD (tAD), is characterized by underlying neuropathology of amyloid plaques and neurofibrillary tangles. There is early evidence that the composition of amyloid plaques could vary between the rpAD and tAD. Differences in tau pathology between rpAD and tAD are also of interest. Additionally, mitochondrial dysfunction is a key early-stage change in tAD but has not yet been evaluated in rpAD.
    OBJECTIVE: To deepen our understanding of the underlying pathophysiological processes specific to rpAD, we explore potential changes in tau pathology and mitochondrial dysfunction in rpAD compared to tAD.
    METHODS: We performed immunohistochemical and immunoblot analyses of tau, phosphorylated tau, and key regulators of mitochondrial dynamics and bioenergetics in postmortem human temporal cortex tissues obtained from patients diagnosed with tAD or rpAD, and tissues from age-matched normal subjects.
    RESULTS: tAD was characterized by significant tau phosphorylation at the PHF1 epitope. Unexpectedly, rpAD showed milder PHF1 tau phosphorylation, similar to that of age-matched controls. Despite these differences in tau pathology, both tAD and rpAD exhibited a significant decrease in the key regulators of mitochondrial dynamics and bioenergetics compared to controls. However, the decline in mitochondrial dynamics regulators was more pronounced in rpAD.
    CONCLUSIONS: These findings suggest divergent pathological processes between tAD and rpAD, specifically in terms of tau pathology and mitochondrial dynamic abnormalities, which underscore the necessity for different approaches to understand and potentially treat various AD subtypes.
    Keywords:  Alzheimer's disease; amyloid plaque; mitochondrial dynamics; mitochondrial dysfunction; neurofibrillary tangles; rapidly progressive Alzheimer's disease; tau
    DOI:  https://doi.org/10.1177/13872877241295403
  3. Front Endocrinol (Lausanne). 2024 ;15 1424826
      Ovarian aging is a major health concern for women. Ovarian aging is associated with reduced health span and longevity. Mitochondrial dysfunction is one of the hallmarks of ovarian aging. In addition to providing oocytes with optimal energy, the mitochondria provide a co-substrate that drives epigenetic processes. Studies show epigenetic alterations, both nuclear and mitochondrial contribute to ovarian aging. Both, nuclear and mitochondrial genomes cross-talk with each other, resulting in two ways orchestrated anterograde and retrograde response that involves epigenetic changes in nuclear and mitochondrial compartments. Epigenetic alterations causing changes in metabolism impact ovarian function. Key mitochondrial co-substrate includes acetyl CoA, NAD+, ATP, and α-KG. Thus, enhancing mitochondrial function in aging ovaries may preserve ovarian function and can lead to ovarian longevity and reproductive and better health outcomes in women. This article describes the role of mitochondria-led epigenetics involved in ovarian aging and discusses strategies to restore epigenetic reprogramming in oocytes by preserving, protecting, or promoting mitochondrial function.
    Keywords:  aging; epigenetics; menopause; mitochondria; ovary
    DOI:  https://doi.org/10.3389/fendo.2024.1424826
  4. Antioxidants (Basel). 2024 Oct 29. pii: 1317. [Epub ahead of print]13(11):
      Flashes of superoxide anion (O2-) in mitochondria are generated spontaneously or during the opening of the permeability transition pore (mPTP) and a sudden change in the metabolic state of a cell. Under certain conditions, O2- can leave the mitochondrial matrix and perform signaling functions beyond mitochondria. In this work, we studied the kinetics of the release of O2- and H2O2 from isolated mitochondria upon mPTP opening and the modulation of the metabolic state of mitochondria by the substrates of respiration and oxidative phosphorylation. It was found that mPTP opening leads to suppression of H2O2 emission and activation of the O2- burst. When the induction of mPTP was blocked by its antagonists (cyclosporine A, ruthenium red, EGTA), the level of substrates of respiration and oxidative phosphorylation and the selective inhibitors of complexes I and V determined the type of reactive oxygen species (ROS) emitted by mitochondria. It was concluded that upon complete and partial reduction and complete oxidation of redox centers of the respiratory chain, mitochondria emit H2O2, O2-, and nothing, respectively. The results indicate that the mPTP- and substrate-dependent switching of the type of ROS leaving mitochondria may be the basis for O2-- and H2O2-selective redox signaling in a cell.
    Keywords:  OXPHOS substrates; hydrogen peroxide; kinetics; mitochondria; redox signaling; superoxide anion
    DOI:  https://doi.org/10.3390/antiox13111317
  5. Cell Death Dis. 2024 Nov 24. 15(11): 856
      Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by respiratory complexes. Mitochondrial 1C metabolism is linked to electron transport through complex I of the respiratory chain. Here, we analysed the proteomic changes in a fly model of AD by overexpressing a toxic form of Aβ (Aβ-Arc). We found that expressing Aβ-Arc caused alterations in components of both complex I and mitochondrial 1C metabolism. Genetically enhancing mitochondrial 1C metabolism through Nmdmc improved mitochondrial function and was neuroprotective in fly models of AD. We also found that exogenous supplementation with the 1C donor folinic acid improved mitochondrial health in both mammalian cells and fly models of AD. We found that genetic variations in MTHFD2L, the human orthologue of Nmdmc, were linked to AD risk. Additionally, Mendelian randomisation showed that increased folate intake decreased the risk of developing AD. Overall, our data suggest enhancement of folate-dependent 1C metabolism as a viable strategy to delay the progression and attenuate the severity of AD.
    DOI:  https://doi.org/10.1038/s41419-024-07179-3
  6. Open Med (Wars). 2024 ;19(1): 20241041
      Ischemic stroke, which accounts for the majority of stroke cases, triggers a complex series of pathophysiological events, prominently characterized by acute oxidative stress due to excessive production of reactive oxygen species (ROS). Oxidative stress plays a crucial role in driving cell death and inflammation in ischemic stroke, making it a significant target for therapeutic intervention. Nanomedicine presents an innovative approach to directly mitigate oxidative damage. This review consolidates existing knowledge on the role of oxidative stress in ischemic stroke and assesses the potential of various ROS-scavenging nanoparticles (NPs) as therapeutic agents. We explore the properties and mechanisms of metal, metal-oxide, and carbon-based NPs, emphasizing their catalytic activity and biocompatibility in scavenging free radicals and facilitating the delivery of therapeutic agents across the blood-brain barrier. Additionally, we address the challenges such as cytotoxicity, immunogenicity, and biodistribution that need to be overcome to translate these nanotechnologies from bench to bedside. The future of NP-based therapies for ischemic stroke holds promise, with the potential to enhance outcomes through targeted modulation of oxidative stress.
    Keywords:  ischemic stroke; nanoparticles; oxidative stress
    DOI:  https://doi.org/10.1515/med-2024-1041
  7. Cells. 2024 Nov 11. pii: 1871. [Epub ahead of print]13(22):
      Chronic diseases and aging have increased significantly in recent decades [...].
    DOI:  https://doi.org/10.3390/cells13221871