Adv Mater. 2021 Dec 06.
e2107875
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent. This article is protected by copyright. All rights reserved.
Keywords: Colloidal crystal engineering; DNA; Nanoparticle; programmable atom equivalent; spherical nucleic acids