bims-drudre Biomed News
on Targeted drug delivery and programmed release mechanisms
Issue of 2021‒11‒07
sixteen papers selected by
Ceren Kimna
Technical University of Munich


  1. Nano Lett. 2021 Nov 03.
      By inducing tumor-specific immune responses, tumor vaccines have recently aroused great research interest. Herein, we design a targeted nanovaccine by equipping cell membrane vesicles (CMVs) harvested from tumor cells with functional DNA including CpG oligonucleotide, an agonist for toll-like receptor 9, as well as an aptamer targeting the dendritic cell (DC)-specific intercellular adhesion molecule (ICAM)-3 grabbing nonintegrin (DC-SIGN) receptor overexpressed on DCs. Such DNA-modified CMVs could target DCs and further stimulate their maturation. Notably, our nanovaccines could trigger robust antitumor immune responses to effective delay the tumor growth. Moreover, the combination of CMV-based nanovaccines with an immune checkpoint blockade could result in improved therapeutic responses by eliminating the majority of the tumors as well as long-term immune memory to prevent tumor recurrence. Therefore, by simply assembling functional DNA on CMVs harvested from tumor cells, we propose a general platform of DC-targeted personalized cancer vaccines for effective and specific cancer immunotherapy.
    Keywords:  aptamer targeting; cancer immunotherapy; cancer vaccine; cell membrane vesicles; immune checkpoint blockade
    DOI:  https://doi.org/10.1021/acs.nanolett.1c02582
  2. Nat Commun. 2021 Nov 04. 12(1): 6399
      Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo.
    DOI:  https://doi.org/10.1038/s41467-021-26655-4
  3. Adv Healthc Mater. 2021 Nov 05. e2101487
      Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix macromolecules, such as Hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. We report the development of a hypervesiculating E.coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, Cytolysin A (ClyA)-Hyaluronidase (Hy) via outer membrane vesicles (OMVs). The capability of targeting hypoxic tumors, manufacturing recombinant proteins in-situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria is effectively cleared, elicits minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic. This article is protected by copyright. All rights reserved.
    Keywords:  desmoplastic cancer; e.coli nissle; hyaluronic acid; immunotherapy; outer membrane vesicle; stromal remodeling; targeted therapy
    DOI:  https://doi.org/10.1002/adhm.202101487
  4. ACS Nano. 2021 Nov 01.
      Extracellular vesicles (EVs), including exosomes and microvesicles derived from different cell sources, are used as promising nanovesicles for delivering therapeutic microRNAs (miRNAs) and drugs in cancer therapy. However, their clinical translation is limited by the quantity, size heterogeneity, and drug or small RNA loading efficiency. Herein, we developed a scalable microfluidic platform that can load therapeutic miRNAs (antimiRNA-21 and miRNA-100) and drugs while controlling the size of microfluidically processed EVs (mpEVs) using a pressure-based disruption and reconstitution process. We prepared mpEVs of optimal size using microvesicles isolated from neural stem cells engineered to overexpress CXCR4 receptor and characterized them for charge and miRNA loading efficiency. Since the delivery of therapeutic miRNAs to brain cancer is limited by the blood-brain barrier (BBB), we adopted intranasal administration of miRNA-loaded CXCR4-engineered mpEVs in orthotopic GBM mouse models and observed a consistent pattern of mpEVs trafficking across the nasal epithelia, bypassing the BBB into the intracranial compartment. In addition, the CXCR4-engineered mpEVs manifested selective tropism toward GBMs by stromal-derived factor-1 chemotaxis to deliver their miRNA cargo. The delivered miRNAs sensitized GBM cells to temozolomide, resulting in prominent tumor regression, and improved the overall survival of mice. A simple and efficient approach of packaging miRNAs in mpEVs using microfluidics, combined with a noninvasive nose-to-brain delivery route presents far-reaching potential opportunities to improve GBM therapy in clinical practice.
    Keywords:  blood brain barrier; cancer therapy; cxcr4; extracellular vesicles; microRNA; microfluidics
    DOI:  https://doi.org/10.1021/acsnano.1c07587
  5. Adv Mater. 2021 Nov 03. e2107243
      Innovative multiplexing technologies based on nano-optics for anti-counterfeiting have been proposed as overt (visible without tools) and covert (hidden and only visible with tools) technologies to secure products and make them difficult to counterfeit. However, most of these nano-optical anti-counterfeiting materials are metasurfaces and metamaterials with complex and expensive fabrication process, often resulting in materials that are not damage tolerant. Highly efficient anti-counterfeiting technologies with easy fabrication process are targeted for intuitive and effective authentication of banknotes, secure documents and goods packing. Here, a simple strategy exploiting self-assembling and nanoimprinting technique to fabricate a composite lattice photonic crystal architecture featuring full spatial control of light, multiplexed full-pixel imaging, and multichannel cryptography combined with customized algorithms is reported. In particular, the real-time encryption/recognition of mobile quick response codes and anti-counterfeiting labels on a postage stamp, encoded by our proposed photonic architecture, are both demonstrated. The wave optics of scattering, diffraction, and polarization process involved are also described, validated with numerical simulations and experiments. By introducing a new degree of freedom in the three-dimensional space, the multichannel image (multiplexed image) switching exhibits unprecedented variability of encryption, providing a promising roadmap to achieve larger information capacity, better security, and higher definition for the benefit of modern anti-counterfeiting security. This article is protected by copyright. All rights reserved.
    Keywords:  anti-counterfeiting; composite lattice photonic crystal; information multiplexing; polarization
    DOI:  https://doi.org/10.1002/adma.202107243
  6. Small. 2021 Nov 05. e2104912
      Engineered platelets (PLT) can bring new possibilities for diseases treatment due to the specific response for a variety of physiological disease environments. However, the deep penetration of engineered PLT in diseased tissues such as tumor is still an important challenge that restricts the therapeutic effect. Herein, the engineered PLT micromotor (PLT@PDA-DOX) is constructed by a universal self-polymerization modification method of dopamine, and the chemotherapeutic drug doxorubicin (DOX) is loaded by both π-π stacking interaction with polydopamine (PDA) and cellular endocytosis of PLT. The experimental results prove that PLT@PDA-DOX can target to tumor site by the specific binding of PLT with cancer cells, and then the secondary PLT-derived microparticles (PMP@PDA-DOX) are released with the activation of PLT@PDA-DOX by tumor microenvironment (TME). Besides, benefiting from the photothermal conversion capability of PDA, PLT@PDA-DOX micromotors and PMP@PDA-DOX nanomotors are driven by near-infrared light to realize deep penetration. And the PLT-based micro/nanomotors with propulsion capability possess good performance for tumor ablating in vitro and in vivo. In consideration of the operability, mildness, universality of this modification method and the good biocompatibility of PDA, this work may provide a general paradigm for the construction of engineered cells in disease treatment.
    Keywords:  cancer therapy; drug delivery; micromotors; microparticles; platelet-derived platelets
    DOI:  https://doi.org/10.1002/smll.202104912
  7. Nat Biomed Eng. 2021 Nov 01.
      The production of personalized cancer vaccines made from autologous tumour cells could benefit from mechanisms that enhance immunogenicity. Here we show that cancer vaccines can be made via the cryogenic silicification of tumour cells, which preserves tumour antigens within nanoscopic layers of silica, followed by the decoration of the silicified surface with pathogen-associated molecular patterns. These pathogen-mimicking cells activate dendritic cells and enhance the internalization, processing and presentation of tumour antigens to T cells. In syngeneic mice with high-grade ovarian cancer, a cell-line-based silicified cancer vaccine supported the polarization of CD4+ T cells towards the T-helper-1 phenotype in the tumour microenvironment, and induced tumour-antigen-specific T-cell immunity, resulting in complete tumour eradication and in long-term animal survival. In the setting of established disease and a suppressive tumour microenvironment, the vaccine synergized with cisplatin. Silicified and surface-modified cells from tumour samples are amenable to dehydration and room-temperature storage without loss of efficacy and may be conducive to making individualized cancer vaccines across tumour types.
    DOI:  https://doi.org/10.1038/s41551-021-00795-w
  8. ACS Nano. 2021 Nov 05.
      Large doses and long duration are often required for herbal medicines to kill bacteria effectively. Herein, a photoacoustic interfacial engineering strategy was utilized to endow curcumin (Cur, a kind of herbal medicine) with rapid and highly effective bacteria-killing efficacy, in which Cur was combined with CuS to form a hybrid material of CuS/Cur with tight contact through in situ nucleation and growth on the petaloid CuS surface. Due to the different work functions of CuS and Cur, the interfacial electrons were redistributed, i.e., a large number of electrons gathered on the side of CuS. In contrast, the holes gathered on the side of Cur after contact. An internal electric field was formed to drive the excited electrons to transfer from CuS to Cur, thus enhancing the separation of electron-hole pairs. Besides exerting the drug nature of Cur itself, the CuS/Cur hybrid also had photo-sono responsive ability, which endowed the hybrid with photothermal, photodynamic, and sonodynamic effects. Therefore, this Cur-based hybrid killed 99.56% of Staphylococcus aureus and 99.48% of Escherichia coli under 808 nm near-infrared light irradiation and ultrasound successively for 15 min, which was ascribed to the synergy of ROS, hyperthermia, and released Cu2+ together with the drug properties of Cur. This work provides a strategy to enhance the therapeutic effects of herbal medicines against pathogenic bacterial infections by exciting the intrinsic properties of herbal medicines as materials through a photo-sono interfacial engineering strategy.
    Keywords:  antibacterial; curcumin; herbal medicines; interfacial engineering; photoacoustic; phototherapy; sonodynamic
    DOI:  https://doi.org/10.1021/acsnano.1c08409
  9. Adv Sci (Weinh). 2021 Oct 31. e2102919
      In a myocardial infarction, blood supply to the left ventricle is abrogated due to blockage of one of the coronary arteries, leading to ischemia, which further triggers the generation of reactive oxygen species (ROS). These sequential processes eventually lead to the death of contractile cells and affect the integrity of blood vessels, resulting in the formation of scar tissue. A new heart therapy comprised of cardiac implants encapsulated within an injectable extracellular matrix-gold nanoparticle composite hydrogel is reported. The particles on the collagenous fibers within the hydrogel promote fast transfer of electrical signal between cardiac cells, leading to the functional assembly of the cardiac implants. The composite hydrogel is shown to absorb reactive oxygen species in vitro and in vivo in mice ischemia reperfusion model. The reduction in ROS levels preserve cardiac tissue morphology and blood vessel integrity, reduce the scar size and the inflammatory response, and significantly prevent the deterioration of heart function.
    Keywords:  cardiac tissue engineering; gold nanoparticles; heart disease; hydrogel; myocardial infarction
    DOI:  https://doi.org/10.1002/advs.202102919
  10. Adv Funct Mater. 2020 Nov 25. pii: 2004942. [Epub ahead of print]30(48):
      Internalization of Staphylococcus aureus by macrophages can inactivate bacterial killing mechanisms, allowing intracellular residence and dissemination of infection. Concurrently, these staphylococci can evade antibiotics that are frequently unable to pass mammalian cell membranes. A binary, amphiphilic conjugate composed of triclosan and ciprofloxacin is synthesized that self-assemble through micelle formation into antimicrobial nanoparticles (ANPs). These novel ANPs are stabilized through encapsulation in macrophage membranes, providing membrane-encapsulated, antimicrobial-conjugated NPs (Me-ANPs) with similar protein activity, Toll-like receptor expression and negative surface charge as their precursor murine macrophage/human monocyte cell lines. The combination of Toll-like receptors and negative surface charge allows uptake of Me-ANPs by infected macrophages/monocytes through positively charged, lysozyme-rich membrane scars created during staphylococcal engulfment. Me-ANPs are not engulfed by more negatively charged sterile cells possessing less lysozyme at their surface. The Me-ANPs kill staphylococci internalized in macrophages in vitro. Me-ANPs likewise kill staphylococci more effectively than ANPs without membrane-encapsulation or clinically used ciprofloxacin in a mouse peritoneal infection model. Similarly, organ infections in mice created by dissemination of infected macrophages through circulation in the blood are better eradicated by Me-ANPs than by ciprofloxacin. These unique antimicrobial properties of macrophage-monocyte Me-ANPs provide a promising direction for human clinical application to combat persistent infections.
    Keywords:  Toll-like receptors; bacterial infections; cell membrane encapsulation; ciprofloxacin; triclosan
    DOI:  https://doi.org/10.1002/adfm.202004942
  11. Adv Sci (Weinh). 2021 Oct 31. e2102545
      Damaged skin cannot prevent harmful bacteria from invading tissues, causing infected wounds and even serious tissue damage. Traditional treatments can not only kill pathogenic bacteria, but also suppress the growth of beneficial bacteria, thus destroying the balance of the damaged skin microbial ecosystem. Here, a living bacterial hydrogel scaffold is reported that accelerates infected wound healing through beneficial bacteria secreting antibacterial substances. Lactobacillus reuteri, a common probiotic, is encapsulated in hydrogel microspheres by emulsion polymerization and further immobilized in a hydrogel network by covalent cross-linking of methacrylate-modified hyaluronic acid. Owing to light-initiated crosslinking, the hydrogel dressing can be generated in situ at the wound site. This hydrogel scaffold not only protects bacteria from immune system attack, but also prevents bacteria from escaping into the local environment, thus avoiding potential threats. Both in vitro and in vivo experiments show that it has excellent ability against harmful bacteria and anti-inflammatory capabilities, promoting infected wound closure and new tissue regeneration. This work may open up new avenues for the application of living bacteria in the clinical management of infected wounds.
    Keywords:  antibacterial hydrogels; hydrogel microspheres; living bacteria; microbial competition; wound healing
    DOI:  https://doi.org/10.1002/advs.202102545
  12. Small. 2021 Nov 02. e2104773
      Tumor radiofrequency ablation (RFA) is a local and minimally invasive application using high temperature to induce coagulative necrosis of tumor, which has been commonly used in clinic. Although the tumor fragments generated by RFA can activate the host's immune system, it may be insufficient to inhibit cancer recurrence due to many factors such as the inefficient antigen presentation by dendritic cells (DCs). In this research, a convenient local administration strategy by blocking rho-associated kinases (ROCK) is applied to amplify the immune responses triggered by RFA via promoting the phagocytosis capacity of DCs. Briefly, ROCK inhibitor, Y27632, is successfully dispersed in the amphiphilic copolymer poly(D,L-lactide-co-glycolide)-b-poly(ethyleneglycol)-b-poly(D,L-lactideco-glycolide) (PLGA-PEG-PLGA) solution, which is sol at room temperature and forms hydrogel quickly at body temperature, obviously prolonging the retention of Y27632 after injection. Interestingly, in the melanoma tumor model, the generated tumor fragments after RFA treatment are swallowed by DCs and undergo reinforced antigen presentation process with the help of gradual released Y27632, further effectively activating T cell mediated anti-tumor immune responses and significantly improving the therapeutic efficiency of RFA. Overall, such strategy remarkably prolongs the survival of mice after RFA treatment, showing great potential for clinical translation as an improvement strategy for RFA.
    Keywords:  ROCK inhibition; enhanced antigen presentation; injectable thermogel; tumor radiofrequency ablation
    DOI:  https://doi.org/10.1002/smll.202104773
  13. Nano Lett. 2021 Nov 01.
      RNA interference (RNAi) is a powerful approach in the treatment of various diseases including cancers. The clinical translation of small interfering RNA (siRNA)-based therapy requires safe and efficient delivery vehicles. Here, we report a siRNA nanogels (NG)-based delivery vehicle, which is driven directly by the intercalation between nucleic acid bis-intercalator and siRNA molecules. The intercalation-based siRNA NG exhibits good physiological stability and can enter cells efficiently via different endocytosis pathways. Furthermore, the siRNA NG can not only silence the target genes in vitro but also significantly inhibit the tumor growth in vivo. Therefore, this study provides an intercalation-based strategy for the development of a siRNA delivery platform for cancer therapy. To the best of our knowledge, this is the first report of the intercalation-driven siRNA NG.
    Keywords:  RNAi; cancer therapy; intercalation; nanogels; siRNA delivery
    DOI:  https://doi.org/10.1021/acs.nanolett.1c03539
  14. Adv Mater. 2021 Nov 05. e2106842
      Wound dressings with wound closure and status monitoring capabilities that can promote wound healing in clinical care have been rarely reported. To achieve more efficient wound management, a novel self-healing elastomer-based multifunctional wound dressing has been developed for sutureless wound closure and timely wound infection monitoring. The self-healing elastomer containing cetyltrimethylammonium bromide (CTAB) has high mechanical toughness (35 MJ m-3 ), biocompatibility and outstanding antibacterial activity (bactericidal rate is ∼90% in 12 h), enabling the wound dressing to effectively inhibit bacterial growth and accelerate infected wound healing. The in vivo full-thickness skin incision model shows that the multifunctional wound dressing can help in contracting wound edges through the excellent self-healing ability of the elastomer to facilitate wound closure and healing, as evidenced by notably dense and well-organized collagen deposition. Furthermore, the temperature, pH and glucose level of the wound area can be detected simultaneously by an integrated sensor array in the wound dressing, providing reliable and timely information of the condition of the wound. This proposed self-healing elastomer-based multifunctional wound dressing is a promising prospect in clinical wound management and post-treatment. This article is protected by copyright. All rights reserved.
    Keywords:  antibacterial; self-healing; sutureless wound closure; wound dressing; wound infection monitoring
    DOI:  https://doi.org/10.1002/adma.202106842
  15. Proc Natl Acad Sci U S A. 2021 Nov 09. pii: e2107507118. [Epub ahead of print]118(45):
      Tumor antigen heterogeneity, a severely immunosuppressive tumor microenvironment (TME) and lymphopenia resulting in inadequate immune intratumoral trafficking, have rendered glioblastoma (GBM) highly resistant to therapy. To address these obstacles, here we describe a unique, sophisticated combinatorial platform for GBM: a cooperative multifunctional immunotherapy based on genetically engineered human natural killer (NK) cells bearing multiple antitumor functions including local tumor responsiveness that addresses key drivers of GBM resistance to therapy: antigen escape, immunometabolic reprogramming of immune responses, and poor immune cell homing. We engineered dual-specific chimeric antigen receptor (CAR) NK cells to bear a third functional moiety that is activated in the GBM TME and addresses immunometabolic suppression of NK cell function: a tumor-specific, locally released antibody fragment which can inhibit the activity of CD73 independently of CAR signaling and decrease the local concentration of adenosine. The multifunctional human NK cells targeted patient-derived GBM xenografts, demonstrated local tumor site-specific activity in the tissue, and potently suppressed adenosine production. We also unveil a complex reorganization of the immunological profile of GBM induced by inhibiting autophagy. Pharmacologic impairment of the autophagic process not only sensitized GBM to antigenic targeting by NK cells but promoted a chemotactic profile favorable to NK infiltration. Taken together, our study demonstrates a promising NK cell-based combinatorial strategy that can target multiple clinically recognized mechanisms of GBM progression simultaneously.
    Keywords:  CD73; autophagy; glioblastoma; immunotherapy; natural killer cells
    DOI:  https://doi.org/10.1073/pnas.2107507118
  16. ACS Nano. 2021 Nov 05.
      Therapy resistance is the major cause of cancer death. As patients respond heterogeneously, precision/personalized medicine needs to be considered, including the application of nanoparticles (NPs). The success of therapeutic NPs requires to first identify clinically relevant resistance mechanisms and to define key players, followed by a rational design of biocompatible NPs capable to target resistance. Consequently, we employed a tiered experimental pipeline from in silico to analytical and in vitro to overcome cisplatin resistance. First, we generated cisplatin-resistant cancer cells and used next-generation sequencing together with CRISPR/Cas9 knockout technology to identify the ion channel LRRC8A as a critical component for cisplatin resistance. LRRC8A's cisplatin-specificity was verified by testing free as well as nanoformulated paclitaxel or doxorubicin. The clinical relevance of LRRC8A was demonstrated by its differential expression in a cohort of 500 head and neck cancer patients, correlating with patient survival under cisplatin therapy. To overcome LRRC8A-mediated cisplatin resistance, we constructed cisplatin-loaded, polysarcosine-based core cross-linked polymeric NPs (NPCis, Ø ∼ 28 nm) with good colloidal stability, biocompatibility (low immunogenicity, low toxicity, prolonged in vivo circulation, no complement activation, no plasma protein aggregation), and low corona formation properties. 2D/3D-spheroid cell models were employed to demonstrate that, in contrast to standard of care cisplatin, NPCis significantly (p < 0.001) eradicated all cisplatin-resistant cells by circumventing the LRRC8A-transport pathway via the endocytic delivery route. We here identified LRRC8A as critical for cisplatin resistance and suggest LRRC8A-guided patient stratification for ongoing or prospective clinical studies assessing therapy resistance to nanoscale platinum drug nanoformulations versus current standard of care formulations.
    Keywords:  cisplatin resistance; nanomedicine; personalized medicine; polypept(o)ides; rational design
    DOI:  https://doi.org/10.1021/acsnano.1c08632