Adv Mater. 2021 Oct 14.
e2103790
Cancer vaccines aim at eliciting tumor-specific responses for the immune system to identify and eradicate malignant tumor cells while sparing the normal tissues. Furthermore, cancer vaccines can potentially induce long-term immunological memory for antitumor responses, preventing metastasis and cancer recurrence, thus presenting an attractive treatment option in cancer immunotherapy. However, clinical efficacy of cancer vaccines has remained low due to longstanding challenges, such as poor immunogenicity, immunosuppressive tumor microenvironment, tumor heterogeneity, inappropriate immune tolerance, and systemic toxicity. Recently, bioinspired materials and biomimetic technologies have emerged to play a part in reshaping the field of cancer nanomedicine. By mimicking desirable chemical and biological properties in nature, bioinspired engineering of cancer vaccine delivery platforms can effectively transport therapeutic cargos to tumor sites, amplify antigen and adjuvant bioactivities, and enable spatiotemporal control and on-demand immunoactivation. As such, integration of biomimetic designs into delivery platforms for cancer vaccines can enhance efficacy while retaining good safety profiles, which contributes to expediting the clinical translation of cancer vaccines. Recent advances in bioinspired delivery platforms for cancer vaccines, existing obstacles faced, as well as insights and future directions for the field are discussed here.
Keywords: biomimetic materials; cancer immunotherapy; cancer vaccines; drug delivery; nanomedicine