bims-drudre Biomed News
on Targeted drug delivery and programmed release mechanisms
Issue of 2021–03–14
sixteen papers selected by
Ceren Kimna, Technical University of Munich



  1. Nature. 2021 Mar 11.
    CITIID-NIHR BioResource COVID-19 Collaboration
      SARS-CoV-2 transmission is uncontrolled in many parts of the world, compounded in some areas by higher transmission potential of the B1.1.7 variant1 now reported in 94 countries. It is unclear whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be impacted by mutations found in B.1.1.7. Here we assessed immune responses following vaccination with mRNA-based vaccine BNT162b22. We measured neutralising antibody responses following first and second immunisations using pseudoviruses expressing the wild-type Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The vaccine sera exhibited a broad range of neutralising titres against the wild-type pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was also evident in sera from some convalescent patients. Decreased B.1.1.7 neutralisation was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 10), the RBM (5 out of 31), but not in RBD neutralising mAbs binding outside the RBM. Introduction of the E484K mutation in a B.1.1.7 background to reflect a newly emergent Variant of Concern (VOC 202102/02) led to a more substantial loss of neutralising activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a threat to the vaccine BNT162b.
    DOI:  https://doi.org/10.1038/s41586-021-03412-7
  2. Nano Lett. 2021 Mar 09.
      Circulating cell-free DNA (cfDNA) released by damaged cells causes inflammation and has been associated with the progression of sepsis. One proposed strategy to treat sepsis is to scavenge this inflammatory circulating cfDNA. Here, we develop a cfDNA-scavenging nanoparticle (NP) that consists of cationic polyethylenimine (PEI) of different molecular weight grafted to zeolitic imidazolate framework-8 (PEI-g-ZIF) in a simple one-pot process. PEI-g-ZIF NPs fabricated using PEI 1800 and PEI 25k but not PEI 600 suppressed cfDNA-induced TLR activation and subsequent nuclear factor kappa B pathway activity. PEI 1800-g-ZIF NPs showed greater inhibition of cfDNA-associated inflammation and multiple organ injury than naked PEI 1800 (lacking ZIF), and had greater therapeutic efficacy in treating sepsis. These results indicate that PEI-g-ZIF NPs acts as a "nanotrap" that improves upon naked PEI in scavenging circulating cfDNA, reducing inflammation, and reversing the progression of sepsis, thus providing a novel strategy for sepsis treatment.
    Keywords:  cell-free DNA; metal−organic framework; nanotrap; polyethylenimine; sepsis
    DOI:  https://doi.org/10.1021/acs.nanolett.0c04759
  3. Adv Mater. 2021 Mar 11. e2007473
      Engineered probiotics have the potential to diagnose and treat a variety of gastrointestinal (GI) diseases. However, these exogenous bacterial agents have limited ability to effectively colonize specific regions of the GI tract due to a lack of external control over their localization and persistence. Magnetic fields are well suited to providing such control, since they freely penetrate biological tissues. However, they are difficult to apply with sufficient strength to directly manipulate magnetically labeled cells in deep tissue such as the GI tract. Here, it is demonstrated that a composite biomagnetic material consisting of microscale magnetic particles and probiotic bacteria, when orally administered and combined with an externally applied magnetic field, enables the trapping and retention of probiotic bacteria within the GI tract of mice. This technology improves the ability of these probiotic agents to accumulate at specific locations and stably colonize without antibiotic treatment. By enhancing the ability of GI-targeted probiotics to be at the right place at the right time, cellular localization assisted by magnetic particles (CLAMP) adds external physical control to an important emerging class of microbial theranostics.
    Keywords:  biomaterials; magnetic control; magnetic particles; microbiome; probiotics
    DOI:  https://doi.org/10.1002/adma.202007473
  4. Sci Transl Med. 2021 Mar 10. pii: eaaw9668. [Epub ahead of print]13(584):
      The therapeutic goal for autoimmune diseases is disease antigen-specific immune tolerance without nonspecific immune suppression. However, it is a challenge to induce antigen-specific immune tolerance in a dysregulated immune system. In this study, we developed immune-homeostatic microparticles (IHMs) that treat multiple mouse models of autoimmunity via induction of apoptosis in activated T cells and reestablishment of regulatory T cells. Specifically, in an experimental model of colitis, IHMs rapidly released monocyte chemotactic protein-1 after intravenous administration, which recruited activated T cells and then induced their apoptosis by conjugated Fas ligand on the IHM surface. This triggered professional macrophages to ingest apoptotic T cells and produce high quantities of transforming growth factor-β, which drove regulatory T cell differentiation. Furthermore, the modular design of IHMs allowed IHMs to be engineered with the autoantigen peptides that can reduce disease in an experimental autoimmune encephalomyelitis mouse model and a nonobese diabetic mouse model. This was accomplished by sustained release of the autoantigens after induction of T cell apoptosis and transforming growth factor-β production by macrophages, which promoted to establish an immune tolerant environment. Thus, IHMs may be an efficient therapeutic strategy for autoimmune diseases through induction of apoptosis and reestablishment of tolerant immune responses.
    DOI:  https://doi.org/10.1126/scitranslmed.aaw9668
  5. Adv Healthc Mater. 2021 Mar 10. e2002143
      Nanoparticles, that can be enriched in the tumor microenvironment and deliver the payloads into cancer cells, are desirable carriers for theranostic agents in cancer diagnosis and treatment. However, efficient targeted delivery and enhanced endocytosis for probes and drugs in theranostics are still major challenges. Here, a nanoparticle, which is capable of charge reversal from negative to positive in response to matrix metalloproteinase 9 (MMP9) in tumor microenvironment is reported. This nanoparticle is based on a novel charge reversible amphiphilic molecule consisting of hydrophobic oleic acid, MMP9-cleavable peptide, and glutamate-rich segment (named as OMPE). The OMPE-modified cationic liposome forms an intelligent anionic nanohybrid (O-NP) with enhanced endocytosis through surface charge reversal in response to MMP9 in vitro. Successfully, O-NP nanohybrid performs preferential accumulation and enhances the endocytosis in MMP9-expressing xenografted tumors in mouse models, which improve the sensitivity of diagnosis agents and the antitumor effects of drugs in vivo by overcoming their low solubility and/or nonspecific enrichment. These results indicate that O-NP can be a promising delivery platform for cancer diagnosis and therapy.
    Keywords:  MMP9-responsive peptides; charge reversal; cleavable peptides; delivery platforms; liposomes
    DOI:  https://doi.org/10.1002/adhm.202002143
  6. Adv Funct Mater. 2021 Jan 27. pii: 2006220. [Epub ahead of print]31(5):
      Macrophages are one of the most abundant non-malignant cells in the tumor microenvironment, playing critical roles in mediating tumor immunity. As important innate immune cells, macrophages possess the potential to engulf tumor cells and present tumor-specific antigens for adaptive antitumor immunity induction, leading to growing interest in targeting macrophage phagocytosis for cancer immunotherapy. Nevertheless, live tumor cells have evolved to evade phagocytosis by macrophages via the extensive expression of anti-phagocytic molecules, such as CD47. In addition, macrophages also rapidly recognize and engulf apoptotic cells (efferocytosis) in the tumor microenvironment, which inhibits inflammatory responses and facilitates immune escape of tumor cells. Thus, intervention of macrophage phagocytosis by blocking anti-phagocytic signals on live tumor cells or inhibiting tumor efferocytosis presents a promising strategy for the development of cancer immunotherapies. Here, the regulation of macrophage-mediated tumor cell phagocytosis is first summarized, followed by an overview of strategies targeting macrophage phagocytosis for the development of antitumor therapies. Given the potential off-target effects associated with the administration of traditional therapeutics (for example, monoclonal antibodies, small molecule inhibitors), we highlight the opportunity for nanomedicine in macrophage phagocytosis intervention.
    Keywords:  TAM receptors; cancer immunotherapy; efferocytosis; innate immune checkpoints; macrophage phagocytosis; nanomedicine
    DOI:  https://doi.org/10.1002/adfm.202006220
  7. Nat Biomed Eng. 2021 Mar 11.
      The de novo design of antimicrobial therapeutics involves the exploration of a vast chemical repertoire to find compounds with broad-spectrum potency and low toxicity. Here, we report an efficient computational method for the generation of antimicrobials with desired attributes. The method leverages guidance from classifiers trained on an informative latent space of molecules modelled using a deep generative autoencoder, and screens the generated molecules using deep-learning classifiers as well as physicochemical features derived from high-throughput molecular dynamics simulations. Within 48 days, we identified, synthesized and experimentally tested 20 candidate antimicrobial peptides, of which two displayed high potency against diverse Gram-positive and Gram-negative pathogens (including multidrug-resistant Klebsiella pneumoniae) and a low propensity to induce drug resistance in Escherichia coli. Both peptides have low toxicity, as validated in vitro and in mice. We also show using live-cell confocal imaging that the bactericidal mode of action of the peptides involves the formation of membrane pores. The combination of deep learning and molecular dynamics may accelerate the discovery of potent and selective broad-spectrum antimicrobials.
    DOI:  https://doi.org/10.1038/s41551-021-00689-x
  8. ACS Nano. 2021 Mar 08.
      Insulin therapy is the central component of treatment for type 1 and advanced type 2 diabetes; however, its narrow therapeutic window is associated with a risk of severe hypoglycemia. A glucose-responsive carrier that demonstrates consistent and slow basal insulin release under a normoglycemic condition and accelerated insulin release in response to hyperglycemia in real-time could offer effective blood glucose regulation with reduced risk of hypoglycemia. Here, we describe a poly(l-lysine)-derived biodegradable glucose-responsive cationic polymer for constructing polymer-insulin complexes for glucose-stimulated insulin delivery. The effects of the modification degree of arylboronic acid in the synthesized cationic polymer and polymer-to-insulin ratio on the glucose-dependent equilibrated free insulin level and the associated insulin release kinetics have been studied. In addition, the blood glucose regulation ability of these complexes and the associated glucose challenge-triggered insulin release are evaluated in type 1 diabetic mice.
    Keywords:  diabetes; drug delivery; glucose-responsive; insulin; stimuli-responsive release
    DOI:  https://doi.org/10.1021/acsnano.0c07291
  9. Small. 2021 Mar 12. e2007819
      Recent studies on electrically powered active particles that can both self-propel and manipulate cargo load and release, have focused on both spherically shaped Janus particles (JP) and on a parallel electrically conducting plates setup. Yet, spherically shaped JPs set a geometrical limitation on the ability to smartly design multiple dielectrophoretic traps on a single active particle. Herein, these active carriers are extended to accommodate any desired shape and selective metallic coating, using a standard photolithography method. The resulting designed positive and negative dielectrophoretic traps of controlled size, location, and intensity, performed as sophisticated active carriers with a high level of control over their mobility and cargo loading. In addition to cargo loading, the engineered particles exhibit interesting motion in an electrically insulating substrate setup, with in-plane electric field, and, in particular, a tilt angle, and even flipping, that strongly depended on the field frequency and amplitude, hence, exhibiting a much more diverse and rich behavior than spherical JP. The engineered self-propelling carriers are expected to open up new possibilities for unified, label-free and selective cargo loading, transport, and delivery of complex multi-particles.
    Keywords:  active carriers; cargo loading and transport; dielectrophoresis; engineered active particles; self-propelling particles
    DOI:  https://doi.org/10.1002/smll.202007819
  10. Nano Lett. 2021 Mar 09.
      Natural cell membranes derived from various cell sources have been successfully utilized to coat nanomaterials for functionalization. However, intracellular membranes from the organelles of eukaryotes remain unexplored. Herein, we choose mitochondrion as a representative cell organelle and coat outer mitochondrial membrane (OMM) from mouse livers onto nanoparticles and field-effect transistors (FETs) through a membrane vesicle-substrate fusion process. Polymeric nanoparticles coated with OMM (OMM-NPs) can bind with ABT-263, a B-cell lymphoma protein 2 (Bcl-2) inhibitor that targets the OMM. As a result, OMM-NPs effectively protect the cells from ABT-263 induced cell death and apoptosis in vitro and attenuated ABT-263-induced thrombocytopenia in vivo. Meanwhile, FET sensors coated with OMM (OMM-FETs) can detect and distinguish anti-Bcl-2 antibody and small molecule agonists. Overall, these results show that OMM can be coated onto the surfaces of both nanoparticles and functional devices, suggesting that intracellular membranes can be used as coating materials for novel biointerfacing.
    Keywords:  Cell membrane coating; biosensor; detoxification; intracellular membrane; mitochondrion
    DOI:  https://doi.org/10.1021/acs.nanolett.1c00238
  11. ACS Nano. 2021 Mar 09.
      NIR-II (1000-1700 nm) fluorescence imaging is continually attracting strong research interest. However, current NIR-II imaging materials are limited to small molecules with fast blood clearance and inorganic nanomaterials and organic conjugated polymers of poor biodegradability and low biocompatibility. Here, we report a highly biodegradable polyester carrying tandem NIR-II fluorophores as a promising alternative. The polymer encapsulated a platinum intercalator (56MESS, (5,6-dimethyl-1,10-phenanthroline) (1S,2S-diaminocyclohexane) platinum(II)) and was conjugated with both a cell-targeting RGD peptide and a caspase-3 cleavable peptide probe to form nanoparticles for simultaneous NIR-II and apoptosis imaging. In vitro, the nanoparticles were approximately 4-1000- and 1.5-10-fold more potent than cisplatin and 56MESS, respectively. Moreover, in vivo, they significantly inhibited tumor growth on a multidrug-resistant patient-derived mouse model (PDXMDR). Finally, through label-free laser desorption-ionization mass spectrometry imaging (MALDI-MSI), in situ 56MESS release in the deeper tumors was observed. This work highlighted the use of biodegradable NIR-II polymers for monitoring drugs in vivo and therapeutic effect feedback in real-time.
    Keywords:  NIR-II polymers; apoptosis imaging; biodegradable; drug tracking; targeted therapy
    DOI:  https://doi.org/10.1021/acsnano.1c00076
  12. ACS Nano. 2021 Mar 12.
      Polymer graftings (PGs) are widely employed in antifouling surfaces and drug delivery systems to regulate the interaction with a foreign environment. Through molecular dynamics simulations and scaling theory analysis, we investigate the physical antifouling properties of PGs via their collision behaviors. Compared with mushroom-like PGs with low grafting density, we find brush-like PGs with high grafting density could generate large deformation-induced entropic repulsive force during a collision, revealing a microscopic mechanism for the hop motions of polymer-grafted nanoparticles for drug delivery observed in experiment. In addition, the collision elasticity of PGs is found to decay with the collision velocity by a power law, i.e., a concise dynamic scaling despite the complex process involved, which is beyond expectation. These results elucidate the dynamic interacting mechanism of PGs, which are of immediate interest for a fundamental understanding of the antifouling performance of PGs and the rational design of PG-coated nanoparticles in nanomedicine for drug delivery.
    Keywords:  antifouling; collision; drug delivery; elasticity; polymer grafting; scaling theory
    DOI:  https://doi.org/10.1021/acsnano.1c01173
  13. Nat Commun. 2021 03 11. 12(1): 1579
      Random mutagenesis is a technique used to generate diversity and engineer biological systems. In vivo random mutagenesis generates diversity directly in a host organism, enabling applications such as lineage tracing, continuous evolution, and protein engineering. Here we describe TRIDENT (TaRgeted In vivo Diversification ENabled by T7 RNAP), a platform for targeted, continual, and inducible diversification at genes of interest at mutation rates one-million fold higher than natural genomic error rates. TRIDENT targets mutagenic enzymes to precise genetic loci by fusion to T7 RNA polymerase, resulting in mutation windows following a mutation targeting T7 promoter. Mutational diversity is tuned by DNA repair factors localized to sites of deaminase-driven mutation, enabling sustained mutation of all four DNA nucleotides at rates greater than 10-4 mutations per bp. We show TRIDENT can be applied to routine in vivo mutagenesis applications by evolving a red-shifted fluorescent protein and drug-resistant mutants of an essential enzyme.
    DOI:  https://doi.org/10.1038/s41467-021-21876-z
  14. Small. 2021 Mar 12. e2007494
      Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable clinical success in eradicating hematologic malignancies. However, hostile microenvironment in solid tumors severely prevents CAR-T cells migrating, infiltrating, and killing. Herein, a nanoengineered CAR-T strategy is reported for enhancing solid tumor therapy through bioorthogonal conjugation with a nano-photosensitizer (indocyanine green nanoparticles, INPs) as a microenvironment modulator. INPs engineered CAR-T biohybrids (CT-INPs) not only retain the original activities and functions of CAR-T cells, but it is further armed with fluorescent tracing and microenvironment remodeling abilities. Irradiated with laser, CT-INPs demonstrate that mild photothermal intervention destroys the extracellular matrix, expanded blood vessels, loosened compact tissue, and stimulated chemokine secretion without damping CAR-T cell activities. Those regulations induce an immune-favorable tumor microenvironment for recruitment and infiltration of CT-INPs. CT-INPs triggered photothermal effects collapse the physical and immunological barriers of solid tumor, and robustly boosted CAR-T immunotherapy. Therefore, CAR-T biohybrids provide reliable treatment strategy for solid tumor immunotherapy via microenvironment reconstruction.
    Keywords:  bioactive material; chimeric antigen receptor T cell therapy; microenvironment remodeling; physiologic barrier; solid tumor
    DOI:  https://doi.org/10.1002/smll.202007494
  15. Adv Ther (Weinh). 2020 Nov;pii: 2000144. [Epub ahead of print]3(11):
      Ovarian cancer is the most lethal gynecological malignancy with a global five-year survival rate of 30-50%. First-line treatment involves cytoreductive surgery and administration of platinum-based small molecules and paclitaxel. These therapies were traditionally administered via intravenous infusion, although intraperitoneal delivery has also been investigated. Initial clinical trials of intraperitoneal administration for ovarian cancer indicated significant improvements in overall survival compared to intravenous delivery, but this result is not consistent across all studies performed. Recently cell-based immunotherapy has been of interest for ovarian cancer. Direct intraperitoneal delivery of cell-based immunotherapies might prompt local immunoregulatory mechanisms to act synergistically with the delivered immunotherapy. Based on this theory, pre-clinical in vivo studies have delivered these cell-based immunotherapies via the intraperitoneal route, with promising results. However, successful intraperitoneal delivery of cell-based immunotherapy and clinical adoption of this technique will depend on overcoming challenges of intraperitoneal delivery and finding the optimal combinations of dose, therapeutic and delivery route. We review the potential advantages and disadvantages of intraperitoneal delivery of cell-based immunotherapy for ovarian cancer and the pre-clinical and clinical work performed so far. Potential advanced delivery strategies, which might improve the efficacy and adoption of intraperitoneal delivery of therapy for ovarian cancer, are also outlined.
    Keywords:  Advanced therapy delivery; advanced drug delivery; chemotherapy; immunotherapy; intraperitoneal delivery; ovarian cancer
    DOI:  https://doi.org/10.1002/adtp.202000144
  16. Adv Ther (Weinh). 2020 Dec;pii: 2000138. [Epub ahead of print]3(12):
      microRNAs regulate numerous biological processes, making them potential therapeutic agents. Problems with delivery and stability of these molecules have limited their usefulness as treatments. We demonstrate that synthetic high-density lipoprotein nanoparticles (HDL NPs) topically applied to the intact ocular surface are taken up by epithelial and stromal cells. microRNAs complexed to HDL NPs (miR-HDL NPs) are similarly taken up by cells and tissues and retain biological activity. Topical treatment of diabetic mice with either HDL NPs or miR-HDL NPs significantly improved corneal re-epithelialization following wounding compared with controls. Mouse corneas with alkali burn-induced inflammation, topically treated with HDL NPs, displayed clinical, morphological and immunological improvement. These results should yield a novel HDL NP-based eye drop for patients with compromised wound healing ability (diabetics) and/or corneal inflammatory diseases (e.g. dry eye).
    Keywords:  Corneal epithelium; EphA2; alkali burn; diabetic cornea; microRNA
    DOI:  https://doi.org/10.1002/adtp.202000138