bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2025–02–16
one paper selected by
Gavin McStay, Liverpool John Moores University



  1. FEBS J. 2025 Feb 11.
      Based on available platforms detailing the Saccharomyces cerevisiae mitochondrial proteome and other high-throughput studies, we identified the yeast gene DMO2 as having a profile of genetic and physical interactions that indicate a putative role in mitochondrial respiration. Dmo2p is a homologue to human distal membrane-arm assembly complex protein 1 (DMAC1); both proteins have two conserved cysteines in a Cx2C motif. Here, we localised Dmo2p in the mitochondrial inner membrane with the conserved cysteines facing the intermembrane space. The respiratory deficiency of dmo2 mutants at 37°C led to a reduction in cytochrome c oxidase (COX) activity (COX) and in the formation of cytochrome bc1 complex-COX supercomplexes; dmo2 also has a rapid turnover of Cox2p, the second subunit of the COX complex that harbours the binuclear CuA centre. Moreover, Dmo2p co-immunoprecipitates with Cox2p and components required for maturation of the CuA centre, such as Sco1p and Sco2p. Finally, DMO2 overexpression can suppress cox23 respiratory deficiency, a mutant that has impaired mitochondrial copper homeostasis. Mass spectrometry data unveiled the interaction of Dmo2p with different large molecular complexes, including bc1-COX supercomplexes, the TIM23 machinery and the ADP/ATP nucleotide translocator. Overall, our data suggest that Dmo2p is required for Cox2p maturation, potentially by aiding proteins involved in copper transport and incorporation into Cox2p.
    Keywords:  COX assembly; CuA site formation; DMAC1 homologue
    DOI:  https://doi.org/10.1111/febs.70009