bims-cytox1 Biomed News
on Cytochrome oxidase subunit 1
Issue of 2024‒01‒21
three papers selected by
Gavin McStay, Liverpool John Moores University



  1. Nat Commun. 2024 Jan 19. 15(1): 611
      Genetic screens have been used extensively to probe interactions between nuclear genes and their impact on phenotypes. Probing interactions between mitochondrial genes and their phenotypic outcome, however, has not been possible due to a lack of tools to map the responsible polymorphisms. Here, using a toolkit we previously established in Drosophila, we isolate over 300 recombinant mitochondrial genomes and map a naturally occurring polymorphism at the cytochrome c oxidase III residue 109 (CoIII109) that fully rescues the lethality and other defects associated with a point mutation in cytochrome c oxidase I (CoIT300I). Through lipidomics profiling, biochemical assays and phenotypic analyses, we show that the CoIII109 polymorphism modulates cardiolipin binding to prevent complex IV instability caused by the CoIT300I mutation. This study demonstrates the feasibility of genetic interaction screens in animal mitochondrial DNA. It unwraps the complex intra-genomic interplays underlying disorders linked to mitochondrial DNA and how they influence disease expression.
    DOI:  https://doi.org/10.1038/s41467-024-44964-2
  2. Biomed Opt Express. 2024 Jan 01. 15(1): 162-184
      This review examines advancements in the measurement and imaging of oxidized cytochrome-c-oxidase (oxCCO) using near-infrared spectroscopy (NIRS) in humans since 2016. A total of 34 published papers were identified, with a focus on both adult and neonate populations. The NIRS-derived oxCCO signal has been demonstrated to correlate with physiological parameters and hemodynamics. New instrumentation, such as systems that allow the imaging of changes of oxCCO with diffuse optical tomography or combine the oxCCO measurement with diffuse correlation spectroscopy measures of blood flow, have advanced the field in the past decade. However, variability in its response across different populations and paradigms and lack of standardization limit its potential as a reliable and valuable indicator of brain health. Future studies should address these issues to fulfill the vision of oxCCO as a clinical biomarker.
    DOI:  https://doi.org/10.1364/BOE.501915
  3. J Biomol Struct Dyn. 2024 Jan 12. 1-18
      Cytochrome c oxidase subunit 1 (Cox1), a key enzyme, has a crucial role in cellular respiration in eukaryotes and prokaryotes. Generally, respiratory inhibitors are considered one of the types of chemical pesticides. Thyme oil and licorice aqueous extract have been reported to have antifungal activities against fungal phytopathogens of Capsicum annuum L., i.e., Colletotrichum capsici, Fusarium oxysporum, and Pythium aphanidermatum. The present study focuses on identifying the key bioactive molecules of thyme and licorice botanicals inhibiting the activity of the Cox1 enzymes of the above mentioned phytopathogens, employing the in-silico approach. From a wide range of bioactive molecules screened, the molecular docking indicated trans-carveol, carvacrol, kaempferol 3-rhamnoside 7-xyloside, kaempferitrin, and astragalin 7-rhamnoside as the potential inhibitors for Cox1 of C. capsici, β-Caryophyllene, Caryophyllene acetate, hispaglabridin A, kaempferol 3-rhamnoside 7-xyloside and licorice glycoside A for Cox1 of F. oxysporum and (+)-Longifolen, Caryophyllene acetate, Hispaglabridin A, Neoliquiritin 2''-apioside and Licorice-saponin A3 for Cox1 of P. aphanidermatum. Most of the top-scoring bioactive molecules exhibited higher binding affinity with the targets than the chemical compound, i.e., carbendazim. Density functional theory (DFT) analysis confirmed the reactivity of the top-docked compounds. Molecular dynamic simulations confirmed the stability of docked complexes when evaluated through multiple descriptors. Additionally, MM/PBSA analysis supported the findings, indicating the spontaneous binding of the enzymes to the screened ligands. ADMET analysis revealed the safety of the selected bioactive compounds. The present findings could be useful in developing biopesticidal formulations as efficient and sustainable alternatives to chemical pesticides.Communicated by Ramaswamy H. Sarma.
    Keywords:  Cox 1; In-silico; licorice; phytopathogens; thyme oil
    DOI:  https://doi.org/10.1080/07391102.2024.2303603