Graefes Arch Clin Exp Ophthalmol. 2020 Jun 07.
PURPOSE: We sought to identify the phenotypic and genotypic characteristics of Korean children with genetically confirmed Leber's hereditary optic neuropathy (LHON).METHODS: The medical records of 64 genetically confirmed LHON patients were reviewed. Seventeen patients aged 13 years or younger with optic atrophy with positive mitochondrial DNA (mtDNA) mutations were considered to demonstrate childhood-onset LHON. The non-childhood-onset group included 47 patients with genetically confirmed LHON who experienced disease onset later than 13 years of age. The type of mtDNA mutation, visual acuity (VA), color vision, fundus photography, retinal nerve fiber layer (RNFL) thickness, and visual field were investigated.
RESULTS: Sequence analysis of the mitochondrial genome revealed five different kinds of LHON-associated mtDNA mutations among our childhood-onset patients, including m.11778G>A (58.8%), m.3496G>T (11.8%), m.3497C>T (5.9%), m.11696G>A (5.9%), and m.14502T>C (5.9%). The mean final best-corrected VA in the childhood-onset group was better than that in the non-childhood-onset group with the value of logMAR 0.29 (0.09-0.75) vs. 0.55 (0.27-1.29) (expressed as median (interquartile range); p = 0.05). Spontaneous visual recovery was observed in 35.3% of the childhood-onset group but in only 12.8% of the non-childhood-onset group (p = 0.04). Eight patients (47.1%) showed interocular asymmetry of the disease, with two presenting true unilateral involvement of the optic nerve and the other six patients demonstrating unilateral subclinical manifestations with bilateral optic atrophy.
CONCLUSION: Involvement of secondary mitochondrial mutations was confirmed in patients with childhood-onset LHON. Characteristic clinical features of childhood-onset LHON included a higher proportion of subacute or insidious onset of symptoms, better VA, higher spontaneous recovery, and asymmetrical ocular involvement.
Keywords: Childhood; Leber’s hereditary optic neuropathy; Mitochondrial DNA mutation