Mol Biomed. 2025 Jun 19. 6(1): 42
Mitochondria are generally considered essential for life in eukaryotic organisms because they produce most of the energy or adenosine triphosphate (ATP) needed by the cell. Beyond energy production, it is now widely accepted that mitochondria also play a pivotal role in maintaining cellular homeostasis and signaling. The two core processes of mitochondrial dynamics, fission and fusion, serve as crucial foundations for maintaining mitochondrial morphology, distribution, and quantity, thereby ensuring cellular homeostasis. Mitochondrial autophagy (mitophagy) ensures the selective degradation of damaged mitochondria, maintaining quality control. Mitochondrial transport and communication further enhance their role in cellular processes. In addition, mitochondria are susceptible to damage, resulting in dysfunction and disruption of intracellular homeostasis, which is closely associated with the development of numerous diseases. These include mitochondrial diseases, neurodegenerative diseases, cardiovascular diseases (CVDs) and stroke, metabolic disorders such as diabetes mellitus, cancer, infectious diseases, and the aging process. Given the central role of mitochondria in disease pathology, there is a growing need to understand their mechanisms and develop targeted therapies. This review aims to provide a comprehensive overview of mitochondrial structure and functions, with a particular focus on their roles in disease development and the current therapeutic strategies targeting mitochondria. These strategies include mitochondrial-targeted antioxidants, modulation of mitochondrial dynamics and quality control, mitochondrial genome editing and genetic therapy, and mitochondrial transplantation. We also discuss the challenges currently facing mitochondrial research and highlight potential future directions for development. By summarizing the latest advancements and addressing gaps in knowledge, this review seeks to guide future research and clinical efforts in the field of mitochondrial medicine.
Keywords: Cancer; Mitochondria; Mitochondrial diseases; Mitochondrial homeostasis; Therapy