bims-curels Biomed News
on Leigh syndrome
Issue of 2024‒05‒05
four papers selected by
Cure Mito Foundation

  1. Medicine (Baltimore). 2024 May 03. 103(18): e37847
      RATIONALE: Mitochondrial diseases are a group of disorders in which mutations in mitochondrial DNA or nuclear DNA lead to dysfunctional oxidative phosphorylation of cells, with mutations in mitochondrial DNA being the most common cause of mitochondrial disease, and mutations in nuclear genes being rarely reported. The echocardiographic findings of mitochondrial diseases with nuclear gene mutations in children's hearts are even rarer. Even more valuable is that we followed up the patient for 4 years and dynamically observed the cardiac echocardiographic manifestations of mitochondrial disease. Provide ideas for the clinical diagnosis and prognosis of mitochondrial diseases.PATIENT CONCERNS: The patient was seen in the pediatric outpatient clinic for poor strength and mental retardation. echocardiography: mild left ventricular (LV) enlargement and LV wall thickening. Nuclear genetic testing: uanosine triphosphate binding protein 3 (GTPBP3) gene mutation. Diagnosis of mitochondrial disease.
    DIAGNOSES: Mitochondrial disease with GTPBP3 gene mutations.
    OUTCOMES: After receiving drug treatment, the patient exhibited a reduction in lactate levels, an enhanced physical condition compared to prior assessments, and demonstrated average intellectual development.
    LESSONS SUBSECTIONS: For echocardiographic indications of LV wall thickening and LV enlargement, one needs to be alert to the possibility of hereditary cardiomyopathy, especially in children.
  2. Neuropathol Appl Neurobiol. 2024 Jun;50(3): e12977
      AIM: Leigh syndrome (LS), the most common paediatric presentation of genetic mitochondrial dysfunction, is a multi-system disorder characterised by severe neurologic and metabolic abnormalities. Symmetric, bilateral, progressive necrotizing lesions in the brainstem are defining features of the disease. Patients are often symptom free in early life but typically develop symptoms by about 2 years of age. The mechanisms underlying disease onset and progression in LS remain obscure. Recent studies have shown that the immune system causally drives disease in the Ndufs4(-/-) mouse model of LS: treatment of Ndufs4(-/-) mice with the macrophage-depleting Csf1r inhibitor pexidartinib prevents disease. While the precise mechanisms leading to immune activation and immune factors involved in disease progression have not yet been determined, interferon-gamma (IFNγ) and interferon gamma-induced protein 10 (IP10) were found to be significantly elevated in Ndufs4(-/-) brainstem, implicating these factors in disease. Here, we aimed to explore the role of IFNγ and IP10 in LS.METHODS: To establish the role of IFNγ and IP10 in LS, we generated IFNγ and IP10 deficient Ndufs4(-/-)/Ifng(-/-) and Ndufs4(-/-)/IP10(-/-) double knockout animals, as well as IFNγ and IP10 heterozygous, Ndufs4(-/-)/Ifng(+/-) and Ndufs4(-/-)/IP10(+/-), animals. We monitored disease onset and progression to define the impact of heterozygous or homozygous loss of IFNγ and IP10 in LS.
    RESULTS: Loss of IP10 does not significantly impact the onset or progression of disease in the Ndufs4(-/-) model. IFNγ loss significantly extends survival and delays disease progression in a gene dosage-dependent manner, though the benefits are modest compared to Csf1r inhibition.
    CONCLUSIONS: IFNγ contributes to disease onset and progression in LS. Our findings suggest that IFNγ targeting therapies may provide some benefits in genetic mitochondrial disease, but targeting IFNγ alone would likely yield only modest benefits in LS.
    Keywords:  Leigh disease; chemokine CXCL10; interferon‐gamma; mitochondrial diseases
  3. Cell Rep. 2024 Apr 26. pii: S2211-1247(24)00476-5. [Epub ahead of print] 114148
      Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.
    Keywords:  4-hydroxybenzoic acid; CP: Metabolism; CoQ biosynthesis; cardiac insufficiency; coenzyme Q deficiency; metabolic disorders; mitochondrial diseases; neurodevelopmental disorders; perinatal lethality; pharmacological therapy; translational medicine
  4. Mov Disord. 2024 Apr 30.
      BACKGROUND: The MRPS36 gene encodes a recently identified component of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the Krebs cycle catalyzing the oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA. Defective OGDHC activity causes a clinically variable metabolic disorder characterized by global developmental delay, severe neurological impairment, liver failure, and early-onset lactic acidosis.METHODS: We investigated the molecular cause underlying Leigh syndrome with bilateral striatal necrosis in two siblings through exome sequencing. Functional studies included measurement of the OGDHC enzymatic activity and MRPS36 mRNA levels in fibroblasts, assessment of protein stability in transfected cells, and structural analysis. A literature review was performed to define the etiological and phenotypic spectrum of OGDHC deficiency.
    RESULTS: In the two affected brothers, exome sequencing identified a homozygous nonsense variant (c.283G>T, p.Glu95*) of MRPS36. The variant did not affect transcript processing and stability, nor protein levels, but resulted in a shorter protein lacking nine residues that contribute to the structural and functional organization of the OGDHC complex. OGDHC enzymatic activity was significantly reduced. The review of previously reported cases of OGDHC deficiency supports the association of this enzymatic defect with Leigh phenotypic spectrum and early-onset movement disorder. Slightly elevated plasma levels of glutamate and glutamine were observed in our and literature patients with OGDHC defect.
    CONCLUSIONS: Our findings point to MRPS36 as a new disease gene implicated in Leigh syndrome. The slight elevation of plasma levels of glutamate and glutamine observed in patients with OGDHC deficiency represents a candidate metabolic signature of this neurometabolic disorder. © 2024 International Parkinson and Movement Disorder Society.
    Keywords:  2‐oxoglutaratedehydrogenase complex; Leigh syndrome; chorea; dystonia; mitochondrial disorders