bims-curels Biomed News
on Leigh syndrome
Issue of 2024‒02‒11
six papers selected by
Cure Mito Foundation

  1. Syst Biol Reprod Med. 2024 Dec;70(1): 38-51
      Mitochondrial diseases are distinct types of metabolic and/or neurologic abnormalities that occur as a consequence of dysfunction in oxidative phosphorylation, affecting several systems in the body. There is no effective treatment modality for mitochondrial disorders so far, emphasizing the clinical significance of preventing the inheritance of these disorders. Various reproductive options are available to reduce the probability of inheriting mitochondrial disorders, including in vitro fertilization (IVF) using donated oocytes, preimplantation genetic testing (PGT), and prenatal diagnosis (PND), among which PGT not only makes it possible for families to have genetically-owned children but also PGT has the advantage that couples do not have to decide to terminate the pregnancy if a mutation is detected in the fetus. PGT for mitochondrial diseases originating from nuclear DNA includes analyzing the nuclear genome for the presence or absence of corresponding mutations. However, PGT for mitochondrial disorders arising from mutations in mitochondrial DNA (mtDNA) is more intricate, due to the specific characteristics of mtDNA such as multicopy nature, heteroplasmy phenomenon, and exclusive maternal inheritance. Therefore, the present review aims to discuss the utility and challenges of PGT as a preventive approach to inherited mitochondrial diseases caused by mtDNA mutations.
    Keywords:  Heteroplasmic mutations; Maternal inheritance; Mitochondria; Preimplantation diagnosis; mtDNA diseases
  2. Orphanet J Rare Dis. 2024 Feb 07. 19(1): 47
      Health technology assessment (HTA) decisions for pharmaceuticals are complex and evolving. New rare disease treatments are often approved more quickly through accelerated approval schemes, creating more uncertainties about clinical evidence and budget impact at the time of market entry. The use of real-world evidence (RWE), including early coverage with evidence development, has been suggested as a means to support HTA decisions for rare disease treatments. However, the collection and use of RWE poses substantial challenges. These challenges are compounded when considered in the context of treatments for rare diseases. In this paper, we describe the methodological challenges to developing and using prospective and retrospective RWE for HTA decisions, for rare diseases in particular. We focus attention on key elements of study design and analyses, including patient selection and recruitment, appropriate adjustment for confounding and other sources of bias, outcome selection, and data quality monitoring. We conclude by offering suggestions to help address some of the most vexing challenges. The role of RWE in coverage and pricing determination will grow. It is, therefore, necessary for researchers, manufacturers, HTA agencies, and payers to ensure that rigorous and appropriate scientific principles are followed when using RWE as part of decision-making.
    Keywords:  Cell and gene therapy; Coverage determination; Coverage with evidence development; Health technology assessment; Rare disease; Real world evidence
  3. Diabetes Metab J. 2024 Feb 01.
      Maternally inherited diabetes and deafness (MIDD) is a rare mitochondrial disorder primarily resulting from m.3243A>G mutation. The clinical characteristics of MIDD exhibit significant heterogeneity. Our study aims to delineate these characteristics and determine the potential correlation with m.3243A>G heteroplasmy levels. This retrospective, descriptive study encompassed patients with confirmed m.3243A>G mutation and diabetes mellitus at Seoul National University Hospital. Our cohort comprises 40 patients with MIDD, with a mean age at study enrollment of 33.3±12.9 years and an average % of heteroplasmy of 30.0%± 14.6% in the peripheral blood. The most prevalent comorbidity was hearing loss (90%), followed by albuminuria (61%), seizure (38%), and stroke (33%). We observed a significant negative correlation between % of heteroplasmy and age at diabetes diagnosis. These clinical features can aid in the suspicion of MIDD and further consideration of genetic testing for m.3243A>G mutation.
    Keywords:  Diabetes mellitus; Genetic diseases, inborn; Heteroplasmy; Maternal inheritance; Mitochondrial diseases
  4. Front Endocrinol (Lausanne). 2023 ;14 1346441
      Metabolic disorders remain a major global health concern in the 21st century, with increasing incidence and prevalence. Mitochondria play a critical role in cellular energy production, calcium homeostasis, signal transduction, and apoptosis. Under physiological conditions, mitochondrial transfer plays a crucial role in tissue homeostasis and development. Mitochondrial dysfunction has been implicated in the pathogenesis of metabolic disorders. Numerous studies have demonstrated that mitochondria can be transferred from stem cells to pathologically injured cells, leading to mitochondrial functional restoration. Compared to cell therapy, mitochondrial transplantation has lower immunogenicity, making exogenous transplantation of healthy mitochondria a promising therapeutic approach for treating diseases, particularly metabolic disorders. This review summarizes the association between metabolic disorders and mitochondria, the mechanisms of mitochondrial transfer, and the therapeutic potential of mitochondrial transfer for metabolic disorders. We hope this review provides novel insights into targeted mitochondrial therapy for metabolic disorders.
    Keywords:  metabolic diseases; mitochondria; mitochondrial transfer; therapy; transplantation