Mol Syst Biol. 2026 Jan 19.
Oncogenic mutations shape colorectal cancer (CRC) biology, yet their impact on transcriptional phenotypes remains incompletely understood, and their individual prognostic value is limited. Here, we perform a pooled single-cell transcriptomic screen of over 100,000 CRC cells with a comprehensive barcoded library of oncogenic variants across genetically diverse CRC lines. Using a variational autoencoder-based interpretable factor model, we identify ten conserved oncogene-driven transcriptional modules (TMOs) representing core cancer phenotypes such as cellular plasticity, inflammatory response, replicative stress, and epithelial-to-mesenchymal transition. Engagement of these modules can be context-dependent, reflecting interactions between oncogene-induced driver pathways and background genetics. TMO activity in patient tumors stratifies CRC cohorts into high- and low-risk groups, improving relapse-free survival prediction beyond existing classification systems. Our study systematically links oncogenic signaling to transcriptional states and clinical outcomes, establishing a functional framework for module-based patient stratification in precision oncology.
Keywords: Colorectal Cancer; Oncogenes; Signatures; Single Cell Screening; Transcriptional Modules