bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2023–06–25
eightteen papers selected by
Connor Rogerson, University of Cambridge



  1. Cell Rep. 2023 Jun 17. pii: S2211-1247(23)00676-9. [Epub ahead of print]42(6): 112665
      Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
    Keywords:  CP: Molecular biology; CP: Stem cell research; ETV2; VEGF; cell fate; commitment; differentiation; endothelial development; hematoendothelium; hematopoiesis; pioneer factors; transcriptional regulation
    DOI:  https://doi.org/10.1016/j.celrep.2023.112665
  2. Nat Methods. 2023 Jun 19.
      Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.
    DOI:  https://doi.org/10.1038/s41592-023-01903-1
  3. Nat Biotechnol. 2023 Jun 22.
      Current N6-methyladenosine (m6A) mapping methods need large amounts of RNA or are limited to cultured cells. Through optimized sample recovery and signal-to-noise ratio, we developed picogram-scale m6A RNA immunoprecipitation and sequencing (picoMeRIP-seq) for studying m6A in vivo in single cells and scarce cell types using standard laboratory equipment. We benchmark m6A mapping on titrations of poly(A) RNA and embryonic stem cells and in single zebrafish zygotes, mouse oocytes and embryos.
    DOI:  https://doi.org/10.1038/s41587-023-01831-7
  4. J Nutr Biochem. 2023 Jun 17. pii: S0955-2863(23)00140-7. [Epub ahead of print] 109407
      Iron is essential to organism physiology as it participates in numerous biological processes including oxygen transport, respiration and erythropoiesis. Although iron is critical to physiology, excess iron is toxic to cells and tissues due to generation of reactive oxygen species. Therefore, well-kept iron homeostasis is a mainstay of proper cell and organ function. Iron overload disorders, caused by nutritional or genetic factors, contribute to many pathologies such as diabetes, non-alcoholic steatohepatitis and hepatocellular carcinoma. The liver is not only vulnerable to the effects of iron overload, it is also the major organ controlling iron homeostasis. During iron overload, Bone Morphogenic Protein (BMP) levels increase and initiate a hepatic response aimed at lowering iron levels. The transcriptional effects of iron overload are not well-characterized and the underlining enhancer regulation is uncharted. Here, we profiled the liver's transcriptome and chromatin accessibility following nutritional iron overload. We found marked changes in gene expression and enhancer accessibility following iron overload. Surprisingly, 16% of genes induced following iron overload participate in propagating the cell cycle. Induction of cell cycle genes was independent of BMP. Genome-wide enhancer landscape profiling revealed hundreds of enhancers with altered activity following iron overload. Characterization of transcription factor motifs and footprints in iron-regulated enhancers showed a role for the Activator Protein 1 (AP-1) transcription factor in promoting cell cycle-related transcription. In summary, we found that the transcriptional program at play during iron overload is bifurcated in which BMP signaling controls iron homeostasis genes while an AP-1-driven program controls cell cycle genes.
    Keywords:  AP-1; Cell cycle; Chromatin; Enhancers; Iron; Transcriptional regulation
    DOI:  https://doi.org/10.1016/j.jnutbio.2023.109407
  5. Sci Adv. 2023 Jun 23. 9(25): eadg0506
      Gene activity defines cell identity, drives intercellular communication, and underlies the functioning of multicellular organisms. We present the single-cell resolution atlas of gene activity of a fertile adult metazoan: Caenorhabditis elegans. This compendium comprises 180 distinct cell types and 19,657 expressed genes. We predict 7541 transcription factor expression profile associations likely responsible for defining cellular identity. We predict thousands of intercellular interactions across the C. elegans body and the ligand-receptor pairs that mediate them, some of which we experimentally validate. We identify 172 genes that show consistent expression across cell types, are involved in basic and essential functions, and are conserved across phyla; therefore, we present them as experimentally validated housekeeping genes. We developed the WormSeq application to explore these data. In addition to the integrated gene-to-systems biology, we present genome-scale single-cell resolution testable hypotheses that we anticipate will advance our understanding of the molecular mechanisms, underlying the functioning of a multicellular organism and the perturbations that lead to its malfunction.
    DOI:  https://doi.org/10.1126/sciadv.adg0506
  6. Cell Syst. 2023 Jun 21. pii: S2405-4712(23)00146-1. [Epub ahead of print]14(6): 501-511.e4
      The transcriptional effector domains of transcription factors play a key role in controlling gene expression; however, their functional nature is poorly understood, hampering our ability to explore this fundamental dimension of gene regulatory networks. To map the trans-regulatory landscape in a complex eukaryote, we systematically characterized the putative transcriptional effector domains of over 400 Arabidopsis thaliana transcription factors for their capacity to modulate transcription. We demonstrate that transcriptional effector activity can be integrated into gene regulatory networks capable of elucidating the functional dynamics underlying gene expression patterns. We further show how our characterized domains can enhance genome engineering efforts and reveal how plant transcriptional activators share regulatory features conserved across distantly related eukaryotes. Our results provide a framework to systematically characterize the regulatory role of transcription factors at a genome-scale in order to understand the transcriptional wiring of biological systems.
    Keywords:  gene regulatory networks; plant synthetic biology; transcription factor
    DOI:  https://doi.org/10.1016/j.cels.2023.05.002
  7. EMBO Rep. 2023 Jun 21. e56227
      Hypoxia can occur in pancreatic β-cells in type 2 diabetes. Although hypoxia exerts deleterious effects on β-cell function, the associated mechanisms are largely unknown. Here, we show that the transcriptional repressor basic helix-loop-helix family member e40 (BHLHE40) is highly induced in hypoxic mouse and human β-cells and suppresses insulin secretion. Conversely, BHLHE40 deficiency in hypoxic MIN6 cells or β-cells of ob/ob mice reverses defects in insulin secretion. Mechanistically, BHLHE40 represses the expression of Mafa, encoding the transcription factor musculoaponeurotic fibrosarcoma oncogene family A (MAFA), by attenuating the binding of pancreas/duodenum homeobox protein 1 (PDX1) to its enhancer region. Impaired insulin secretion in hypoxic β-cells was recovered by MAFA re-expression. Collectively, our work identifies BHLHE40 as a key hypoxia-induced transcriptional repressor in β-cells that inhibit insulin secretion by suppressing MAFA expression.
    Keywords:  BHLHE40; hypoxia; insulin secretion; pancreatic β-cells; transcriptional repressor
    DOI:  https://doi.org/10.15252/embr.202256227
  8. EMBO J. 2023 Jun 20. e112741
      While extended loop extrusion across the entire Igh locus controls VH -DJH recombination, local regulatory sequences, such as the PAIR elements, may also activate VH gene recombination in pro-B-cells. Here, we show that PAIR-associated VH 8 genes contain a conserved putative regulatory element (V8E) in their downstream sequences. To investigate the function of PAIR4 and its V8.7E, we deleted 890 kb containing all 14 PAIRs in the Igh 5' region, which reduced distal VH gene recombination over a 100-kb distance on either side of the deletion. Reconstitution by insertion of PAIR4-V8.7E strongly activated distal VH gene recombination. PAIR4 alone resulted in lower induction of recombination, indicating that PAIR4 and V8.7E function as one regulatory unit. The pro-B-cell-specific activity of PAIR4 depends on CTCF, as mutation of its CTCF-binding site led to sustained PAIR4 activity in pre-B and immature B-cells and to PAIR4 activation in T-cells. Notably, insertion of V8.8E was sufficient to activate VH gene recombination. Hence, enhancers of the PAIR4-V8.7E module and V8.8E element activate distal VH gene recombination and thus contribute to the diversification of the BCR repertoire in the context of loop extrusion.
    Keywords:  CTCF; Igh VH gene recombination; PAIR4 element; Pax5; novel recombination enhancers
    DOI:  https://doi.org/10.15252/embj.2022112741
  9. Mol Cell. 2023 Jun 12. pii: S1097-2765(23)00385-4. [Epub ahead of print]
      The transcriptional termination of unstable non-coding RNAs (ncRNAs) is poorly understood compared to coding transcripts. We recently identified ZC3H4-WDR82 ("restrictor") as restricting human ncRNA transcription, but how it does this is unknown. Here, we show that ZC3H4 additionally associates with ARS2 and the nuclear exosome targeting complex. The domains of ZC3H4 that contact ARS2 and WDR82 are required for ncRNA restriction, suggesting their presence in a functional complex. Consistently, ZC3H4, WDR82, and ARS2 co-transcriptionally control an overlapping population of ncRNAs. ZC3H4 is proximal to the negative elongation factor, PNUTS, which we show enables restrictor function and is required to terminate the transcription of all major RNA polymerase II transcript classes. In contrast to short ncRNAs, longer protein-coding transcription is supported by U1 snRNA, which shields transcripts from restrictor and PNUTS at hundreds of genes. These data provide important insights into the mechanism and control of transcription by restrictor and PNUTS.
    Keywords:  ARS2; PNUTS; RNA polymerase II; U1 snRNA; WDR82; ZC3H4; exosome; non-coding RNA; transcription termination
    DOI:  https://doi.org/10.1016/j.molcel.2023.05.029
  10. Oncogene. 2023 Jun 23.
      Reversible and dynamic O-GlcNAcylation regulates vast networks of highly coordinated cellular and nuclear processes. Although dysregulation of the sole enzyme O-GlcNAc transferase (OGT) was shown to be associated with the progression of hepatocellular carcinoma (HCC), the mechanisms by which OGT controls the cis-regulatory elements in the genome and performs transcriptional functions remain unclear. Here, we demonstrate that elevated OGT levels enhance HCC proliferation and metastasis, in vitro and in vivo, by orchestrating the transcription of numerous regulators of malignancy. Diverse transcriptional regulators are recruited by OGT in HCC cells undergoing malignant progression, which shapes genome-wide OGT chromatin cis-element occupation. Furthermore, an unrecognized cooperation between ZNF263 and OGT is crucial for activating downstream transcription in HCC cells. We reveal that O-GlcNAcylation of Ser662 is responsible for the chromatin association of ZNF263 at candidate gene promoters and the OGT-facilitated HCC malignant phenotypes. Our data establish the importance of aberrant OGT activity and ZNF263 O-GlcNAcylation in the malignant progression of HCC and support the investigation of OGT as a therapeutic target for HCC.
    DOI:  https://doi.org/10.1038/s41388-023-02751-1
  11. Commun Biol. 2023 Jun 23. 6(1): 664
      Self-renewing somatic tissues rely on progenitors to support the continuous tissue regeneration. The gene regulatory network maintaining progenitor function remains incompletely understood. Here we show that NUP98 and RAE1 are highly expressed in epidermal progenitors, forming a separate complex in the nucleoplasm. Reduction of NUP98 or RAE1 abolishes progenitors' regenerative capacity, inhibiting proliferation and inducing premature terminal differentiation. Mechanistically, NUP98 binds on chromatin near the transcription start sites of key epigenetic regulators (such as DNMT1, UHRF1 and EZH2) and sustains their expression in progenitors. NUP98's chromatin binding sites are co-occupied by HDAC1. HDAC inhibition diminishes NUP98's chromatin binding and dysregulates NUP98 and RAE1's target gene expression. Interestingly, HDAC inhibition further induces NUP98 and RAE1 to localize interdependently to the nucleolus. These findings identified a pathway in progenitor maintenance, where HDAC activity directs the high levels of NUP98 and RAE1 to directly control key epigenetic regulators, escaping from nucleolar aggregation.
    DOI:  https://doi.org/10.1038/s42003-023-05043-2
  12. J Biol Chem. 2023 Jun 15. pii: S0021-9258(23)01956-7. [Epub ahead of print] 104928
      A nucleosome is typically positioned with its proximal edge (NPE) ∼50 bp downstream from the transcription start site (TSS) of metazoan RNA polymerase II promoters. This +1 nucleosome has distinctive characteristics beyond its location, including the presence of variant histone types and trimethylation of histone H3 at lysine 4 (H3K4me3). To address the role of these features in transcription complex assembly, we generated templates with four different promoters and nucleosomes located at a variety of downstream positions which were transcribed in vitro using HeLa nuclear extracts. Two promoters lacked TATA elements but all supported strong initiation from a single TSS. In contrast to results with minimal in vitro systems based on the TATA binding protein (TBP), TATA promoter templates with a +51 NPE were transcriptionally inhibited in extracts; activity continuously increased as the nucleosome was moved downstream to +100. Inhibition was much more pronounced for the TATA-less promoters: +51 NPE templates were inactive and substantial activity was only seen with the +100 NPE templates. Substituting the histone variants H2A.Z, H3.3 or both did not eliminate the inhibition. However, addition of excess TBP restored activity on nucleosomal templates with TATA promoters, even with an NPE at +20. Remarkably, nucleosomal templates with the H3K4me3 modification are active with an NPE at +51 for both TATA and TATA-less promoters. Our results strongly suggest that the +1 nucleosome interferes with promoter recognition by TFIID. This inhibition can be overcome with TBP alone at TATA promoters or through positive interactions with histone modifications and TFIID.
    Keywords:  RNA polymerase II; TFIID; histone methylation; nucleosome; promoter
    DOI:  https://doi.org/10.1016/j.jbc.2023.104928
  13. Cell Rep Med. 2023 06 20. pii: S2666-3791(23)00201-X. [Epub ahead of print]4(6): 101082
      Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.
    Keywords:  H3K27M mutation; IDH mutation; NFKBIA deletion; glioma; haploinsufficiency; methylome; nomogram; tumor suppressor
    DOI:  https://doi.org/10.1016/j.xcrm.2023.101082
  14. Cell Rep. 2023 Jun 22. pii: S2211-1247(23)00682-4. [Epub ahead of print]42(7): 112671
      The master transcriptional regulator PU.1/Spi-1 engages DNA sites with affinities spanning multiple orders of magnitude. To elucidate this remarkable plasticity, we have characterized 22 high-resolution co-crystallographic PU.1/DNA complexes across the addressable affinity range in myeloid gene transactivation. Over a purine-rich core (such as 5'-GGAA-3') flanked by variable sequences, affinity is negotiated by direct readout on the 5' flank via a critical glutamine (Q226) sidechain and by indirect readout on the 3' flank by sequence-dependent helical flexibility. Direct readout by Q226 dynamically specifies PU.1's characteristic preference for purines and explains the pathogenic mutation Q226E in Waldenström macroglobulinemia. The structures also reveal how disruption of Q226 mediates strand-specific inhibition by DNA methylation and the recognition of non-canonical sites, including the authentic binding sequence at the CD11b promoter. A re-synthesis of phylogenetic and structural data on the ETS family, considering the centrality of Q226 in PU.1, unifies the model of DNA selection by ETS proteins.
    Keywords:  CD11B; CP: Molecular biology; CSF1R; DNA methylation; DNA specificity; ETS transcription factors; PU.1; SPI1; epigenetic regulation; non-canonical binding; protein-DNA interactions
    DOI:  https://doi.org/10.1016/j.celrep.2023.112671
  15. Oncogene. 2023 Jun 22.
      Esophageal squamous cell carcinoma (ESCC) is one of the deadliest forms of human malignancy that currently lacks approved targeted therapeutics. Accumulating evidence suggests that SOX2 overexpression is a key driving factor for ESCC and various squamous cell carcinoma. Here, through screening a small-molecule kinase inhibitor library, we identified GSK3β as a kinase that is critically required for robust SOX2 expression in ESCC cells. GSK3β did not promote SOX2 transcriptionally but was required for SOX2 protein stability. We demonstrated that GSK3β interacts with and phosphorylates SOX2 at residue S251, which blocks SOX2 from ubiquitination and proteasome-dependent degradation instigated by ubiquitin E3 ligase CUL4ADET1-COP1. Pharmacological inhibition or knockdown of GSK3β by RNA interference selectively impaired SOX2-positive ESCC cell proliferation, cancer stemness, and tumor growth in mouse xenograft model, suggesting that GSK3β promotes ESCC tumorigenesis primarily by driving SOX2 overexpression. GSK3β was found to be frequently overexpressed in clinical esophageal tumors, and there was a positive correlation between GSK3β and SOX2 protein levels. Notably, we found that SOX2 enhanced GSK3β expression transcriptionally, suggesting the existence of a vicious cycle that drives a coordinated GSK3β and SOX2 overexpression in ESCC cells. Finally, we demonstrated in tumor xenograft model that GSK3β inhibitor AR-A014418 was effective in suppressing SOX2-positive ESCC tumor progression and inhibited tumor progression cooperatively with chemotherapeutic agent carboplatin. In conclusion, we uncovered a novel role for GSK3β in driving SOX2 overexpression and tumorigenesis and provided evidence that targeting GSK3β may hold promise for the treatment of recalcitrant ESCCs.
    DOI:  https://doi.org/10.1038/s41388-023-02748-w
  16. J Gastroenterol Hepatol. 2023 Jun 18.
      Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. The detailed epigenomic changes during fat accumulation in liver are not clear yet. Here, we performed ChIP-Seq analysis in the liver tissues of high-fat diet and regular chow diet mice and investigated the dynamic landscapes of H3K27ac and H3K9me3 marks on chromatin. We find that the activated typical enhancers marked with H3K27ac are enriched on lipid metabolic pathways in fat liver; however, super enhancers do not change much. The regions covered with H3K9me3 repressive mark seem to undergo great changes, and its peak number and intensity both decrease in fat liver. The enhancers located in lost H3K9me3 regions are enriched in lipid metabolism and inflammatory pathways; and motif analysis shows that they are potential targets for transcription factors involved in metabolic and inflammatory processes. Our study has revealed that H3K9me3 may play an important role during the pathogenesis of NAFLD through regulating the accessibility of enhancers.
    Keywords:  H3K27ac; H3K9me3; NAFLD; epigenomics; fat liver
    DOI:  https://doi.org/10.1111/jgh.16252
  17. Genome Biol. 2023 Jun 23. 24(1): 148
      Variability of gene expression due to stochasticity of transcription or variation of extrinsic signals, termed biological noise, is a potential driving force of cellular differentiation. Utilizing single-cell RNA-sequencing, we develop VarID2 for the quantification of biological noise at single-cell resolution. VarID2 reveals enhanced nuclear versus cytoplasmic noise, and distinct regulatory modes stratified by correlation between noise, expression, and chromatin accessibility. Noise levels are minimal in murine hematopoietic stem cells (HSCs) and increase during differentiation and ageing. Differential noise identifies myeloid-biased Dlk1+ long-term HSCs in aged mice with enhanced quiescence and self-renewal capacity. VarID2 reveals noise dynamics invisible to conventional single-cell transcriptome analysis.
    Keywords:  Ageing; Cell sate variability; Gene expression noise; Hematopoietic stem cells; Machine learning; Mathematical modeling; Single-cell RNA sequencing; Stem cell differentiation
    DOI:  https://doi.org/10.1186/s13059-023-02974-1
  18. Genome Biol. 2023 06 20. 24(1): 143
       BACKGROUND: Single-cell histone post translational modification (scHPTM) assays such as scCUT&Tag or scChIP-seq allow single-cell mapping of diverse epigenomic landscapes within complex tissues and are likely to unlock our understanding of various mechanisms involved in development or diseases. Running scHTPM experiments and analyzing the data produced remains challenging since few consensus guidelines currently exist regarding good practices for experimental design and data analysis pipelines.
    RESULTS: We perform a computational benchmark to assess the impact of experimental parameters and data analysis pipelines on the ability of the cell representation to recapitulate known biological similarities. We run more than ten thousand experiments to systematically study the impact of coverage and number of cells, of the count matrix construction method, of feature selection and normalization, and of the dimension reduction algorithm used. This allows us to identify key experimental parameters and computational choices to obtain a good representation of single-cell HPTM data. We show in particular that the count matrix construction step has a strong influence on the quality of the representation and that using fixed-size bin counts outperforms annotation-based binning. Dimension reduction methods based on latent semantic indexing outperform others, and feature selection is detrimental, while keeping only high-quality cells has little influence on the final representation as long as enough cells are analyzed.
    CONCLUSIONS: This benchmark provides a comprehensive study on how experimental parameters and computational choices affect the representation of single-cell HPTM data. We propose a series of recommendations regarding matrix construction, feature and cell selection, and dimensionality reduction algorithms.
    DOI:  https://doi.org/10.1186/s13059-023-02981-2