bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2023–06–18
twenty-six papers selected by
Connor Rogerson, University of Cambridge



  1. Nucleic Acids Res. 2023 Jun 16. pii: gkad520. [Epub ahead of print]
      Pioneer factors are transcription factors (TFs) that have the unique ability to recognise their target DNA sequences within closed chromatin. Whereas their interactions with cognate DNA is similar to other TFs, their ability to interact with chromatin remains poorly understood. Having previously defined the modalities of DNA interactions for the pioneer factor Pax7, we have now used natural isoforms of this pioneer as well as deletion and replacement mutants to investigate the Pax7 structural requirements for chromatin interaction and opening. We show that the GL+ natural isoform of Pax7 that has two extra amino acids within the DNA binding paired domain is unable to activate the melanotrope transcriptome and to fully activate a large subset of melanotrope-specific enhancers targeted for Pax7 pioneer action. This enhancer subset remains in the primed state rather than being fully activated, despite the GL+ isoform having similar intrinsic transcriptional activity as the GL- isoform. C-terminal deletions of Pax7 lead to the same loss of pioneer ability, with similar reduced recruitments of the cooperating TF Tpit and of the co-regulators Ash2 and BRG1. This suggests complex interrelations between the DNA binding and C-terminal domains of Pax7 that are crucial for its chromatin opening pioneer ability.
    DOI:  https://doi.org/10.1093/nar/gkad520
  2. Nat Commun. 2023 Jun 16. 14(1): 3587
      The packaging of the genetic material into chromatin imposes the remodeling of this barrier to allow efficient transcription. RNA polymerase II activity is coupled with several histone modification complexes that enforce remodeling. How RNA polymerase III (Pol III) counteracts the inhibitory effect of chromatin is unknown. We report here a mechanism where RNA Polymerase II (Pol II) transcription is required to prime and maintain nucleosome depletion at Pol III loci and contributes to efficient Pol III recruitment upon re-initiation of growth from stationary phase in Fission yeast. The Pcr1 transcription factor participates in the recruitment of Pol II, which affects local histone occupancy through the associated SAGA complex and a Pol II phospho-S2 CTD / Mst2 pathway. These data expand the central role of Pol II in gene expression beyond mRNA synthesis.
    DOI:  https://doi.org/10.1038/s41467-023-39387-4
  3. Genome Res. 2023 Jun 09. pii: gr.277698.123. [Epub ahead of print]
      HIV-1 integration introduces ectopic transcription factor binding sites into host chromatin. We postulate that the integrated provirus serves as an ectopic enhancer that recruits additional transcriptional factors to the integration locus, increases chromatin accessibility, changes 3D chromatin interactions, and enhances both retroviral and host gene expression. We used 4 well-characterized HIV-1-infected cell line clones having unique integration sites and low to high levels of HIV-1 expression. Using single-cell DOGMA-seq, which captured the heterogeneity of HIV-1 expression and host chromatin accessibility, we found that HIV-1 transcription correlated with HIV-1 accessibility and host chromatin accessibility. HIV-1 integration increased local host chromatin accessibility within ~5-30 kb distance. CRISPRa and CRISPRi-mediated HIV-1 promoter activation and inhibition confirmed integration site-dependent HIV-1-driven changes of host chromatin accessibility. HIV-1 did not drive chromatin confirmation changes at the genomic level (by Hi-C) or the enhancer connectome (by H3K27ac HiChIP). Using 4C-seq to interrogate HIV-1-chromatin interactions, we found that HIV-1 interacted with host chromatin ~100-300 kb from the integration site. By identifying chromatin regions having both increased transcription factor activity (by ATAC-seq) and HIV-1-chromtain interaction (by 4C-seq), we identified enrichment of ETS, RUNT, and ZNF-family transcription factor binding that may mediate HIV-1-host chromatin interactions. Our study found that HIV-1 promoter activity increased host chromatin accessibility, increased HIV-1-host chromatin interactions in an integration site-dependent manner, within the existing chromatin boundaries.
    DOI:  https://doi.org/10.1101/gr.277698.123
  4. Nat Struct Mol Biol. 2023 Jun 12.
      Mammalian genomes harbor abundant transposable elements (TEs) and their remnants, with numerous epigenetic repression mechanisms enacted to silence TE transcription. However, TEs are upregulated during early development, neuronal lineage, and cancers, although the epigenetic factors contributing to the transcription of TEs have yet to be fully elucidated. Here, we demonstrate that the male-specific lethal (MSL)-complex-mediated histone H4 acetylation at lysine 16 (H4K16ac) is enriched at TEs in human embryonic stem cells (hESCs) and cancer cells. This in turn activates transcription of subsets of full-length long interspersed nuclear elements (LINE1s, L1s) and endogenous retrovirus (ERV) long terminal repeats (LTRs). Furthermore, we show that the H4K16ac-marked L1 and LTR subfamilies display enhancer-like functions and are enriched in genomic locations with chromatin features associated with active enhancers. Importantly, such regions often reside at boundaries of topologically associated domains and loop with genes. CRISPR-based epigenetic perturbation and genetic deletion of L1s reveal that H4K16ac-marked L1s and LTRs regulate the expression of genes in cis. Overall, TEs enriched with H4K16ac contribute to the cis-regulatory landscape at specific genomic locations by maintaining an active chromatin landscape at TEs.
    DOI:  https://doi.org/10.1038/s41594-023-01016-5
  5. Cell Rep. 2023 Jun 13. pii: S2211-1247(23)00661-7. [Epub ahead of print]42(6): 112650
      METTL14 (methyltransferase-like 14) is an RNA-binding protein that partners with METTL3 to mediate N6-methyladenosine (m6A) methylation. Recent studies identified a function for METTL3 in heterochromatin in mouse embryonic stem cells (mESCs), but the molecular function of METTL14 on chromatin in mESCs remains unclear. Here, we show that METTL14 specifically binds and regulates bivalent domains, which are marked by trimethylation of histone H3 lysine 27 (H3K27me3) and lysine 4 (H3K4me3). Knockout of Mettl14 results in decreased H3K27me3 but increased H3K4me3 levels, leading to increased transcription. We find that bivalent domain regulation by METTL14 is independent of METTL3 or m6A modification. METTL14 enhances H3K27me3 and reduces H3K4me3 by interacting with and probably recruiting the H3K27 methyltransferase polycomb repressive complex 2 (PRC2) and H3K4 demethylase KDM5B to chromatin. Our findings identify an METTL3-independent role of METTL14 in maintaining the integrity of bivalent domains in mESCs, thus indicating a mechanism of bivalent domain regulation in mammals.
    Keywords:  CP: Molecular biology
    DOI:  https://doi.org/10.1016/j.celrep.2023.112650
  6. Sci Rep. 2023 Jun 09. 13(1): 9385
      The glucocorticoid receptor (GR) is a ligand-activated transcription factor that regulates a suite of genes through direct binding of GR to specific DNA promoter elements. GR also interacts with RNA, but the function of this RNA-binding activity remains elusive. Current models speculate that RNA could repress the transcriptional activity of GR. To investigate the function of the GR-RNA interaction on GR's transcriptional activity, we generated cells that stably express a mutant of GR with reduced RNA binding affinity and treated the cells with the GR agonist dexamethasone. Changes in the dexamethasone-driven transcriptome were quantified using 4-thiouridine labeling of RNAs followed by high-throughput sequencing. We find that while many genes are unaffected, GR-RNA binding is repressive for specific subsets of genes in both dexamethasone-dependent and independent contexts. Genes that are dexamethasone-dependent are activated directly by chromatin-bound GR, suggesting a competition-based repression mechanism in which increasing local concentrations of RNA may compete with DNA for binding to GR at sites of transcription. Unexpectedly, genes that are dexamethasone-independent instead display a localization to specific chromosomal regions, which points to changes in chromatin accessibility or architecture. These results show that RNA binding plays a fundamental role in regulating GR function and highlights potential functions for transcription factor-RNA interactions.
    DOI:  https://doi.org/10.1038/s41598-023-35549-y
  7. Cell. 2023 Jun 09. pii: S0092-8674(23)00580-9. [Epub ahead of print]
      Cancer is characterized by hypomethylation-associated silencing of large chromatin domains, whose contribution to tumorigenesis is uncertain. Through high-resolution genome-wide single-cell DNA methylation sequencing, we identify 40 core domains that are uniformly hypomethylated from the earliest detectable stages of prostate malignancy through metastatic circulating tumor cells (CTCs). Nested among these repressive domains are smaller loci with preserved methylation that escape silencing and are enriched for cell proliferation genes. Transcriptionally silenced genes within the core hypomethylated domains are enriched for immune-related genes; prominent among these is a single gene cluster harboring all five CD1 genes that present lipid antigens to NKT cells and four IFI16-related interferon-inducible genes implicated in innate immunity. The re-expression of CD1 or IFI16 murine orthologs in immuno-competent mice abrogates tumorigenesis, accompanied by the activation of anti-tumor immunity. Thus, early epigenetic changes may shape tumorigenesis, targeting co-located genes within defined chromosomal loci. Hypomethylation domains are detectable in blood specimens enriched for CTCs.
    Keywords:  CD1A; DNA hypomethylation; IFI16; NKT cells; circulating tumor cells; immune surveillance; lipid antigens; prostate cancer; single-cell sequencing; tumorigenesis
    DOI:  https://doi.org/10.1016/j.cell.2023.05.028
  8. Mol Cell. 2023 Jun 06. pii: S1097-2765(23)00378-7. [Epub ahead of print]
      Histone lysine acylation, including acetylation and crotonylation, plays a pivotal role in gene transcription in health and diseases. However, our understanding of histone lysine acylation has been limited to gene transcriptional activation. Here, we report that histone H3 lysine 27 crotonylation (H3K27cr) directs gene transcriptional repression rather than activation. Specifically, H3K27cr in chromatin is selectively recognized by the YEATS domain of GAS41 in complex with SIN3A-HDAC1 co-repressors. Proto-oncogenic transcription factor MYC recruits GAS41/SIN3A-HDAC1 complex to repress genes in chromatin, including cell-cycle inhibitor p21. GAS41 knockout or H3K27cr-binding depletion results in p21 de-repression, cell-cycle arrest, and tumor growth inhibition in mice, explaining a causal relationship between GAS41 and MYC gene amplification and p21 downregulation in colorectal cancer. Our study suggests that H3K27 crotonylation signifies a previously unrecognized, distinct chromatin state for gene transcriptional repression in contrast to H3K27 trimethylation for transcriptional silencing and H3K27 acetylation for transcriptional activation.
    Keywords:  GAS41; YEATS domain; crystal structure; gene transcriptional repression; histone lysine crotonylation
    DOI:  https://doi.org/10.1016/j.molcel.2023.05.022
  9. Mol Cell. 2023 Jun 15. pii: S1097-2765(23)00412-4. [Epub ahead of print]83(12): 1970-1982.e6
      Pioneer transcription factors are essential for cell fate changes by targeting closed chromatin. OCT4 is a crucial pioneer factor that can induce cell reprogramming. However, the structural basis of how pioneer factors recognize the in vivo nucleosomal DNA targets is unknown. Here, we determine the high-resolution structures of the nucleosome containing human LIN28B DNA and its complexes with the OCT4 DNA binding region. Three OCT4s bind the pre-positioned nucleosome by recognizing non-canonical DNA sequences. Two use their POUS domains while the other uses the POUS-loop-POUHD region; POUHD serves as a wedge to unwrap ∼25 base pair DNA. Our analysis of previous genomic data and determination of the ESRRB-nucleosome-OCT4 structure confirmed the generality of these structural features. Moreover, biochemical studies suggest that multiple OCT4s cooperatively open the H1-condensed nucleosome array containing the LIN28B nucleosome. Thus, our study suggests a mechanism of how OCT4 can target the nucleosome and open closed chromatin.
    Keywords:  ESSRB; LIN28B; Nu-site; OCT4; linker histone; multiple binding sites; non-canonical motif; pioneer factor; pioneer factor cooperativity
    DOI:  https://doi.org/10.1016/j.molcel.2023.05.030
  10. NAR Cancer. 2023 Sep;5(3): zcad028
      Rhabdomyosarcoma (RMS) is a pediatric soft tissue cancer with a lack of precision therapy options for patients. We hypothesized that with a general paucity of known mutations in RMS, chromatin structural driving mechanisms are essential for tumor proliferation. Thus, we carried out high-depth in situ Hi-C in representative cell lines and patient-derived xenografts (PDXs) to define chromatin architecture in each major RMS subtype. We report a comprehensive 3D chromatin structural analysis and characterization of fusion-positive (FP-RMS) and fusion-negative RMS (FN-RMS). We have generated spike-in in situ Hi-C chromatin interaction maps for the most common FP-RMS and FN-RMS cell lines and compared our data with PDX models. In our studies, we uncover common and distinct structural elements in large Mb-scale chromatin compartments, tumor-essential genes within variable topologically associating domains and unique patterns of structural variation. Our high-depth chromatin interactivity maps and comprehensive analyses provide context for gene regulatory events and reveal functional chromatin domains in RMS.
    DOI:  https://doi.org/10.1093/narcan/zcad028
  11. Sci Adv. 2023 Jun 16. 9(24): eade1122
      How chromatin dynamics relate to transcriptional activity remains poorly understood. Using single-molecule tracking, coupled with machine learning, we show that histone H2B and multiple chromatin-bound transcriptional regulators display two distinct low-mobility states. Ligand activation results in a marked increase in the propensity of steroid receptors to bind in the lowest-mobility state. Mutational analysis revealed that interactions with chromatin in the lowest-mobility state require an intact DNA binding domain and oligomerization domains. These states are not spatially separated as previously believed, but individual H2B and bound-TF molecules can dynamically switch between them on time scales of seconds. Single bound-TF molecules with different mobilities exhibit different dwell time distributions, suggesting that the mobility of TFs is intimately coupled with their binding dynamics. Together, our results identify two unique and distinct low-mobility states that appear to represent common pathways for transcription activation in mammalian cells.
    DOI:  https://doi.org/10.1126/sciadv.ade1122
  12. EMBO Rep. 2023 Jun 15. e56492
      Repetitive DNA elements are packaged in heterochromatin, but many require bursts of transcription to initiate and maintain long-term silencing. The mechanisms by which these heterochromatic genome features are transcribed remain largely unknown. Here, we show that DOT1L, a conserved histone methyltransferase that modifies lysine 79 of histone H3 (H3K79), has a specialized role in transcription of major satellite repeats to maintain pericentromeric heterochromatin and genome stability. We find that H3K79me3 is selectively enriched relative to H3K79me2 at repetitive elements in mouse embryonic stem cells (mESCs), that DOT1L loss compromises pericentromeric satellite transcription, and that this activity involves possible coordination between DOT1L and the chromatin remodeler SMARCA5. Stimulation of transcript production from pericentromeric repeats by DOT1L participates in stabilization of heterochromatin structures in mESCs and cleavage-stage embryos and is required for preimplantation viability. Our findings uncover an important role for DOT1L as a bridge between transcriptional activation of repeat elements and heterochromatin stability, advancing our understanding of how genome integrity is maintained and how chromatin state is set up during early development.
    Keywords:  DOT1L; embryo; embryonic stem cells; heterochromatin; major satellite
    DOI:  https://doi.org/10.15252/embr.202256492
  13. Nat Immunol. 2023 Jun 15.
      Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFβ and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFβ-SMAD signaling axis.
    DOI:  https://doi.org/10.1038/s41590-023-01528-8
  14. Elife. 2023 Jun 14. pii: e86127. [Epub ahead of print]12
      Coordinated regulation of gene activity by transcriptional and translational mechanisms poise stem cells for a timely cell-state transition during differentiation. Although important for all stemness-to-differentiation transitions, mechanistic understanding of the fine-tuning of gene transcription is lacking due to the compensatory effect of translational control. We used intermediate neural progenitor (INP) identity commitment to define the mechanisms that fine-tune stemness gene transcription in fly neural stem cells (neuroblasts). We demonstrate that the transcription factor FruitlessC (FruC) binds cis-regulatory elements of most genes uniquely transcribed in neuroblasts. Loss of fruC function alone has no effect on INP commitment but drives INP dedifferentiation when translational control is reduced. FruC negatively regulates gene expression by promoting low-level enrichment of the repressive histone mark H3K27me3 in gene cis-regulatory regions. Identical to fruC loss-of-function, reducing Polycomb Repressive Complex 2 activity increases stemness gene activity. We propose low-level H3K27me3 enrichment fine-tunes gene transcription in stem cells, a mechanism likely conserved from flies to humans.
    Keywords:  D. melanogaster; developmental biology; regenerative medicine; stem cells
    DOI:  https://doi.org/10.7554/eLife.86127
  15. Commun Biol. 2023 Jun 10. 6(1): 625
      G-quadruplexes (G4s) regulate DNA replication and gene transcription, and are enriched in promoters without fully appreciated functional relevance. Here we show high selection pressure on putative G4 (pG4) forming sequences in promoters through investigating genetic and genomic data. Analyses of 76,156 whole-genome sequences reveal that G-tracts and connecting loops in promoter pG4s display lower or higher allele frequencies, respectively, than pG4-flanking regions, and central guanines (Gs) in G-tracts show higher selection pressure than other Gs. Additionally, pG4-promoters produce over 72.4% of transcripts, and promoter G4-containing genes are expressed at relatively high levels. Most genes repressed by TMPyP4, a G4-ligand, regulate epigenetic processes, and promoter G4s are enriched with gene activation histone marks, chromatin remodeler and transcription factor binding sites. Consistently, cis-expression quantitative trait loci (cis-eQTLs) are enriched in promoter pG4s and their G-tracts. Overall, our study demonstrates selective constraint of promoter G4s and reinforces their stimulative role in gene expression.
    DOI:  https://doi.org/10.1038/s42003-023-05015-6
  16. Genome Biol. 2023 Jun 16. 24(1): 138
      Despite the recent rise of RNA-seq datasets combining single-cell (sc) resolution with 4-thiouridine (4sU) labelling, analytical methods exploiting their power to dissect transcriptional bursting are lacking. Here, we present a mathematical model and Bayesian inference implementation to facilitate genome-wide joint parameter estimation and confidence quantification (R package: burstMCMC). We demonstrate that, unlike conventional scRNA-seq, 4sU scRNA-seq resolves temporal parameters and furthermore boosts inference of dimensionless parameters via a synergy between single-cell resolution and 4sU labelling. We apply our method to published 4sU scRNA-seq data and linked with ChIP-seq data, we uncover previously obscured associations between different parameters and histone modifications.
    Keywords:  4sU; Bursting; Dynamics; Genome-wide; Histone modification; Inference; Single-cell; Time-resolved; Transcription
    DOI:  https://doi.org/10.1186/s13059-023-02977-y
  17. Nucleic Acids Res. 2023 Jun 16. pii: gkad506. [Epub ahead of print]
      Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.
    DOI:  https://doi.org/10.1093/nar/gkad506
  18. J Chem Inf Model. 2023 Jun 12.
      Pioneer transcription factors (PTFs) have the remarkable ability to directly bind to chromatin to stimulate vital cellular processes. In this work, we dissect the universal binding mode of Sox PTF by combining extensive molecular simulations and physiochemistry approaches, along with DNA footprinting techniques. As a result, we show that when Sox consensus DNA is located at the solvent-facing DNA strand, Sox binds to the compact nucleosome without imposing any significant conformational changes. We also reveal that the base-specific Sox:DNA interactions (base reading) and Sox-induced DNA changes (shape reading) are concurrently required for sequence-specific nucleosomal DNA recognition. Among three different nucleosome positions located on the positive DNA arm, a sequence-specific reading mechanism is solely satisfied at the superhelical location 2 (SHL2). While SHL2 acts transparently for solvent-facing Sox binding, among the other two positions, SHL4 permits only shape reading. The final position, SHL0 (dyad), on the other hand, allows no reading mechanism. These findings demonstrate that Sox-based nucleosome recognition is essentially guided by intrinsic nucleosome properties, permitting varying degrees of DNA recognition.
    DOI:  https://doi.org/10.1021/acs.jcim.2c01520
  19. Commun Biol. 2023 Jun 14. 6(1): 640
      Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.
    DOI:  https://doi.org/10.1038/s42003-023-05025-4
  20. Nat Genet. 2023 Jun 15.
      During development, Hox genes are temporally activated according to their relative positions on their clusters, contributing to the proper identities of structures along the rostrocaudal axis. To understand the mechanism underlying this Hox timer, we used mouse embryonic stem cell-derived stembryos. Following Wnt signaling, the process involves transcriptional initiation at the anterior part of the cluster and a concomitant loading of cohesin complexes enriched on the transcribed DNA segments, that is, with an asymmetric distribution favoring the anterior part of the cluster. Chromatin extrusion then occurs with successively more posterior CTCF sites acting as transient insulators, thus generating a progressive time delay in the activation of more posterior-located genes due to long-range contacts with a flanking topologically associating domain. Mutant stembryos support this model and reveal that the presence of evolutionary conserved and regularly spaced intergenic CTCF sites controls the precision and the pace of this temporal mechanism.
    DOI:  https://doi.org/10.1038/s41588-023-01426-7
  21. EMBO J. 2023 Jun 12. e113565
      BRCA1/BARD1 is a tumor suppressor E3 ubiquitin (Ub) ligase with roles in DNA damage repair and in transcriptional regulation. BRCA1/BARD1 RING domains interact with nucleosomes to facilitate mono-ubiquitylation of distinct residues on the C-terminal tail of histone H2A. These enzymatic domains constitute a small fraction of the heterodimer, raising the possibility of functional chromatin interactions involving other regions such as the BARD1 C-terminal domains that bind nucleosomes containing the DNA damage signal H2A K15-Ub and H4 K20me0, or portions of the expansive intrinsically disordered regions found in both subunits. Herein, we reveal novel interactions that support robust H2A ubiquitylation activity mediated through a high-affinity, intrinsically disordered DNA-binding region of BARD1. These interactions support BRCA1/BARD1 recruitment to chromatin and sites of DNA damage in cells and contribute to their survival. We also reveal distinct BRCA1/BARD1 complexes that depend on the presence of H2A K15-Ub, including a complex where a single BARD1 subunit spans adjacent nucleosome units. Our findings identify an extensive network of multivalent BARD1-nucleosome interactions that serve as a platform for BRCA1/BARD1-associated functions on chromatin.
    Keywords:  BRCA1/BARD1; DNA repair; chromatin; intrinsically disordered region; ubiquitin
    DOI:  https://doi.org/10.15252/embj.2023113565
  22. Mol Cell. 2023 Jun 06. pii: S1097-2765(23)00379-9. [Epub ahead of print]
      Kinetochore is an essential protein complex required for accurate chromosome segregation. The constitutive centromere-associated network (CCAN), a subcomplex of the kinetochore, associates with centromeric chromatin and provides a platform for the kinetochore assembly. The CCAN protein CENP-C is thought to be a central hub for the centromere/kinetochore organization. However, the role of CENP-C in CCAN assembly needs to be elucidated. Here, we demonstrate that both the CCAN-binding domain and the C-terminal region that includes the Cupin domain of CENP-C are necessary and sufficient for chicken CENP-C function. Structural and biochemical analyses reveal self-oligomerization of the Cupin domains of chicken and human CENP-C. We find that the CENP-C Cupin domain oligomerization is vital for CENP-C function, centromeric localization of CCAN, and centromeric chromatin organization. These results suggest that CENP-C facilitates the centromere/kinetochore assembly through its oligomerization.
    Keywords:  CCAN; CENP-C; centromere; chromosome segregation; kinetochore assembly; oligomerization
    DOI:  https://doi.org/10.1016/j.molcel.2023.05.023
  23. Cell Rep. 2023 Jun 13. pii: S2211-1247(23)00643-5. [Epub ahead of print]42(6): 112632
      Various stress conditions are signaled through phosphorylation of translation initiation factor eukaryotic initiation factor 2α (eIF2α) to inhibit global translation while selectively activating transcription factor ATF4 to aid cell survival and recovery. However, this integrated stress response is acute and cannot resolve lasting stress. Here, we report that tyrosyl-tRNA synthetase (TyrRS), a member of the aminoacyl-tRNA synthetase family that responds to diverse stress conditions through cytosol-nucleus translocation to activate stress-response genes, also inhibits global translation. However, it occurs at a later stage than eIF2α/ATF4 and mammalian target of rapamycin (mTOR) responses. Excluding TyrRS from the nucleus over-activates translation and increases apoptosis in cells under prolonged oxidative stress. Nuclear TyrRS transcriptionally represses translation genes by recruiting TRIM28 and/or NuRD complex. We propose that TyrRS, possibly along with other family members, can sense a variety of stress signals through intrinsic properties of this enzyme and strategically located nuclear localization signal and integrate them by nucleus translocation to effect protective responses against chronic stress.
    Keywords:  CP: Cell biology; CP: Molecular biology; aminoacyl-tRNA synthetase; cell survival; oxidative stress; stress response; transcriptional regulation; translation inhibition
    DOI:  https://doi.org/10.1016/j.celrep.2023.112632
  24. Genome Res. 2023 May;33(5): 763-778
      Mapping the gene targets of chromatin-associated transcription regulators (TRs) is a major goal of genomics research. ChIP-seq of TRs and experiments that perturb a TR and measure the differential abundance of gene transcripts are a primary means by which direct relationships are tested on a genomic scale. It has been reported that there is a poor overlap in the evidence across gene regulation strategies, emphasizing the need for integrating results from multiple experiments. Although research consortia interested in gene regulation have produced a valuable trove of high-quality data, there is an even greater volume of TR-specific data throughout the literature. In this study, we show a workflow for the identification, uniform processing, and aggregation of ChIP-seq and TR perturbation experiments for the ultimate purpose of ranking human and mouse TR-target interactions. Focusing on an initial set of eight regulators (ASCL1, HES1, MECP2, MEF2C, NEUROD1, PAX6, RUNX1, and TCF4), we identified 497 experiments suitable for analysis. We used this corpus to examine data concordance, to identify systematic patterns of the two data types, and to identify putative orthologous interactions between human and mouse. We build upon commonly used strategies to forward a procedure for aggregating and combining these two genomic methodologies, assessing these rankings against independent literature-curated evidence. Beyond a framework extensible to other TRs, our work also provides empirically ranked TR-target listings, as well as transparent experiment-level gene summaries for community use.
    DOI:  https://doi.org/10.1101/gr.277273.122
  25. Nat Commun. 2023 Jun 10. 14(1): 3429
      Faithful inheritance of parental histones is essential to maintain epigenetic information and cellular identity during cell division. Parental histones are evenly deposited onto the replicating DNA of sister chromatids in a process dependent on the MCM2 subunit of DNA helicase. However, the impact of aberrant parental histone partition on human disease such as cancer is largely unknown. In this study, we construct a model of impaired histone inheritance by introducing MCM2-2A mutation (defective in parental histone binding) in MCF-7 breast cancer cells. The resulting impaired histone inheritance reprograms the histone modification landscapes of progeny cells, especially the repressive histone mark H3K27me3. Lower H3K27me3 levels derepress the expression of genes associated with development, cell proliferation, and epithelial to mesenchymal transition. These epigenetic changes confer fitness advantages to some newly emerged subclones and consequently promote tumor growth and metastasis after orthotopic implantation. In summary, our results indicate that impaired inheritance of parental histones can drive tumor progression.
    DOI:  https://doi.org/10.1038/s41467-023-39185-y
  26. Nat Chem Biol. 2023 Jun 15.
      5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.
    DOI:  https://doi.org/10.1038/s41589-023-01318-1