bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2023‒03‒19
sixteen papers selected by
Connor Rogerson
University of Cambridge

  1. Genes Dev. 2023 Mar 17.
      Pioneer transcription factors are thought to play pivotal roles in developmental processes by binding nucleosomal DNA to activate gene expression, though mechanisms through which pioneer transcription factors remodel chromatin remain unclear. Here, using single-cell transcriptomics, we show that endogenous expression of neurogenic transcription factor ASCL1, considered a classical pioneer factor, defines a transient population of progenitors in human neural differentiation. Testing ASCL1's pioneer function using a knockout model to define the unbound state, we found that endogenous expression of ASCL1 drives progenitor differentiation by cis-regulation both as a classical pioneer factor and as a nonpioneer remodeler, where ASCL1 binds permissive chromatin to induce chromatin conformation changes. ASCL1 interacts with BAF SWI/SNF chromatin remodeling complexes, primarily at targets where it acts as a nonpioneer factor, and we provide evidence for codependent DNA binding and remodeling at a subset of ASCL1 and SWI/SNF cotargets. Our findings provide new insights into ASCL1 function regulating activation of long-range regulatory elements in human neurogenesis and uncover a novel mechanism of its chromatin remodeling function codependent on partner ATPase activity.
    Keywords:  ASCL1; ATAC-seq; ChIP-seq; chromatin regulation; mSWI/SNF; neural stem cell; neurogenesis; pioneer transcription factor; scRNA-seq
  2. Mol Cell. 2023 Mar 13. pii: S1097-2765(23)00154-5. [Epub ahead of print]
      Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.
    Keywords:  CTCF; enhancers; gene regulation; genetic engineering; genome writing; stem cells; synthetic regulatory genomics
  3. PLoS Biol. 2023 Mar 17. 21(3): e3001778
      The c-Myc protooncogene places a demand on glucose uptake to drive glucose-dependent biosynthetic pathways. To meet this demand, c-Myc protein (Myc henceforth) drives the expression of glucose transporters, glycolytic enzymes, and represses the expression of thioredoxin interacting protein (TXNIP), which is a potent negative regulator of glucose uptake. A Mychigh/TXNIPlow gene signature is clinically significant as it correlates with poor clinical prognosis in triple-negative breast cancer (TNBC) but not in other subtypes of breast cancer, suggesting a functional relationship between Myc and TXNIP. To better understand how TXNIP contributes to the aggressive behavior of TNBC, we generated TXNIP null MDA-MB-231 (231:TKO) cells for our study. We show that TXNIP loss drives a transcriptional program that resembles those driven by Myc and increases global Myc genome occupancy. TXNIP loss allows Myc to invade the promoters and enhancers of target genes that are potentially relevant to cell transformation. Together, these findings suggest that TXNIP is a broad repressor of Myc genomic binding. The increase in Myc genomic binding in the 231:TKO cells expands the Myc-dependent transcriptome we identified in parental MDA-MB-231 cells. This expansion of Myc-dependent transcription following TXNIP loss occurs without an apparent increase in Myc's intrinsic capacity to activate transcription and without increasing Myc levels. Together, our findings suggest that TXNIP loss mimics Myc overexpression, connecting Myc genomic binding and transcriptional programs to the nutrient and progrowth signals that control TXNIP expression.
  4. Nat Commun. 2023 Mar 17. 14(1): 1475
      Split-Hand/Foot Malformation type 3 (SHFM3) is a congenital limb malformation associated with tandem duplications at the LBX1/FGF8 locus. Yet, the disease patho-mechanism remains unsolved. Here we investigate the functional consequences of SHFM3-associated rearrangements on chromatin conformation and gene expression in vivo in transgenic mice. We show that the Lbx1/Fgf8 locus consists of two separate, but interacting, regulatory domains. Re-engineering of a SHFM3-associated duplication and a newly reported inversion in mice results in restructuring of the chromatin architecture. This leads to ectopic activation of the Lbx1 and Btrc genes in the apical ectodermal ridge (AER) in an Fgf8-like pattern induced by AER-specific enhancers of Fgf8. We provide evidence that the SHFM3 phenotype is the result of a combinatorial effect on gene misexpression in the developing limb. Our results reveal insights into the molecular mechanism underlying SHFM3 and provide conceptual framework for how genomic rearrangements can cause gene misexpression and disease.
  5. Nature. 2023 Mar 15.
      Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.
  6. Nature. 2023 Mar 15.
      Whole-genome doubling (WGD) is a recurrent event in human cancers and it promotes chromosomal instability and acquisition of aneuploidies1-8. However, the three-dimensional organization of chromatin in WGD cells and its contribution to oncogenic phenotypes are currently unknown. Here we show that in p53-deficient cells, WGD induces loss of chromatin segregation (LCS). This event is characterized by reduced segregation between short and long chromosomes, A and B subcompartments and adjacent chromatin domains. LCS is driven by the downregulation of CTCF and H3K9me3 in cells that bypassed activation of the tetraploid checkpoint. Longitudinal analyses revealed that LCS primes genomic regions for subcompartment repositioning in WGD cells. This results in chromatin and epigenetic changes associated with oncogene activation in tumours ensuing from WGD cells. Notably, subcompartment repositioning events were largely independent of chromosomal alterations, which indicates that these were complementary mechanisms contributing to tumour development and progression. Overall, LCS initiates chromatin conformation changes that ultimately result in oncogenic epigenetic and transcriptional modifications, which suggests that chromatin evolution is a hallmark of WGD-driven cancer.
  7. Nat Commun. 2023 Mar 15. 14(1): 1443
      Lineage plasticity has been proposed as a major source of intratumoral heterogeneity and therapeutic resistance. Here, by employing an inducible genetic engineered mouse model, we illustrate that lineage plasticity enables advanced Pancreatic Ductal Adenocarcinoma (PDAC) tumors to develop spontaneous relapse following elimination of the central oncogenic driver - Yap. Transcriptomic and immunohistochemistry analysis of a large panel of PDAC tumors reveals that within high-grade tumors, small niches of PDAC cells gradually evolve to re-activate pluripotent transcription factors (PTFs), which lessen their dependency on Yap. Comprehensive Cut&Tag analysis demonstrate that although acquisition of PTF expression is coupled with the process of epithelial-to-mesenchymal transition (EMT), PTFs form a core transcriptional regulatory circuitry (CRC) with Jun to overcome Yap dependency, which is distinct from the classic TGFb-induced EMT-TF network. A chemical-genetic screen and follow-up functional studies establish Brd4 as an epigenetic gatekeeper for the PTF-Jun CRC, and strong synergy between BET and Yap inhibitors in blocking PDAC growth.
  8. Mol Cell. 2023 Mar 03. pii: S1097-2765(23)00114-4. [Epub ahead of print]
      CRISPR activation (CRISPRa) is an important tool to perturb transcription, but its effectiveness varies between target genes. We employ human pluripotent stem cells with thousands of randomly integrated barcoded reporters to assess epigenetic features that influence CRISPRa efficacy. Basal expression levels are influenced by genomic context and dramatically change during differentiation to neurons. Gene activation by dCas9-VPR is successful in most genomic contexts, including developmentally repressed regions, and activation level is anti-correlated with basal gene expression, whereas dCas9-p300 is ineffective in stem cells. Certain chromatin states, such as bivalent chromatin, are particularly sensitive to dCas9-VPR, whereas constitutive heterochromatin is less responsive. We validate these rules at endogenous genes and show that activation of certain genes elicits a change in the stem cell transcriptome, sometimes showing features of differentiated cells. Our data provide rules to predict CRISPRa outcome and highlight its utility to screen for factors driving stem cell differentiation.
    Keywords:  CRISPR activation; CRISPRa; VPR; chromatin; epigenetic; hiPSC; iNeurons; p300; single cell; stem cells
  9. Mol Cell. 2023 Mar 08. pii: S1097-2765(23)00117-X. [Epub ahead of print]
      The Polycomb-group chromatin modifiers play important roles to repress or switch off gene expression in plants and animals. How the active chromatin state is switched to a Polycomb-repressed state is unclear. In Arabidopsis, prolonged cold induces the switching of the highly active chromatin state at the potent floral repressor FLC to a Polycomb-repressed state, which is epigenetically maintained when temperature rises to confer "cold memory," enabling plants to flower in spring. We report that the cis-acting cold memory element (CME) region at FLC bears bivalent marks of active histone H3K4me3 and repressive H3K27me3 that are read and interpreted by an assembly of bivalent chromatin readers to drive cold-induced switching of the FLC chromatin state. In response to cold, the 47-bp CME and its associated bivalent chromatin feature drive the switching of active chromatin state at a recombinant gene to a Polycomb-repressed domain, conferring cold memory. We reveal a paradigm for environment-induced chromatin-state switching at bivalent loci in plants.
    Keywords:  CME; FLC; PcG protein; Polycomb repression; bivalent chromatin; flowering time; histone reader; vernalization
  10. Genome Res. 2023 Mar 16.
      SWI/SNF and NuRD are protein complexes that antagonistically regulate DNA accessibility. However, repression of their activities often leads to unanticipated changes in target gene expression (paradoxical), highlighting our incomplete understanding of their activities. Here we show that SWI/SNF and NuRD are in a tug-of-war to regulate PRC2 occupancy at lowly expressed and bivalent genes in mouse embryonic stem cells (mESCs). In contrast, at promoters of average or highly expressed genes, SWI/SNF and NuRD antagonistically modulate RNA polymerase II (Pol II) release kinetics, arguably owing to accompanying alterations in H3.3 and H2A.Z levels at promoter-flanking nucleosomes, leading to paradoxical changes in gene expression. Owing to this mechanism, the relative activities of the two remodelers potentiate gene promoters toward Pol II-dependent open or PRC2-dependent closed chromatin states. Our results highlight RNA Pol II occupancy as the key parameter in determining the direction of gene expression changes in response to SWI/SNF and NuRD inactivation at gene promoters in mESCs.
  11. Gut. 2023 Mar 14. pii: gutjnl-2022-328332. [Epub ahead of print]
    Singapore Gastric Cancer Consortium
      OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer mortality, with ARID1A being the second most frequently mutated driver gene in GC. We sought to decipher ARID1A-specific GC regulatory networks and examine therapeutic vulnerabilities arising from ARID1A loss.DESIGN: Genomic profiling of GC patients including a Singapore cohort (>200 patients) was performed to derive mutational signatures of ARID1A inactivation across molecular subtypes. Single-cell transcriptomic profiles of ARID1A-mutated GCs were analysed to examine tumour microenvironmental changes arising from ARID1A loss. Genome-wide ARID1A binding and chromatin profiles (H3K27ac, H3K4me3, H3K4me1, ATAC-seq) were generated to identify gastric-specific epigenetic landscapes regulated by ARID1A. Distinct cancer hallmarks of ARID1A-mutated GCs were converged at the genomic, single-cell and epigenomic level, and targeted by pharmacological inhibition.
    RESULTS: We observed prevalent ARID1A inactivation across GC molecular subtypes, with distinct mutational signatures and linked to a NFKB-driven proinflammatory tumour microenvironment. ARID1A-depletion caused loss of H3K27ac activation signals at ARID1A-occupied distal enhancers, but unexpectedly gain of H3K27ac at ARID1A-occupied promoters in genes such as NFKB1 and NFKB2. Promoter activation in ARID1A-mutated GCs was associated with enhanced gene expression, increased BRD4 binding, and reduced HDAC1 and CTCF occupancy. Combined targeting of promoter activation and tumour inflammation via bromodomain and NFKB inhibitors confirmed therapeutic synergy specific to ARID1A-genomic status.
    CONCLUSION: Our results suggest a therapeutic strategy for ARID1A-mutated GCs targeting both tumour-intrinsic (BRD4-assocatiated promoter activation) and extrinsic (NFKB immunomodulation) cancer phenotypes.
    Keywords:  gastric cancer
  12. Mol Cancer Res. 2023 Mar 17. pii: MCR-22-0516. [Epub ahead of print]
      Estrogen receptor alpha (ER/ESR1) mutations occur in 30-40% of endocrine resistant ER-positive (ER+) breast cancer. Forkhead Box A1 (FOXA1) is a key pioneer factor mediating ER-chromatin interactions and endocrine response in ER+ breast cancer, but its role in ESR1 mutant breast cancer remains unclear. Our previous FOXA1 ChIP-seq identified a large portion of redistributed binding sites in T47D genome-edited Y537S and D538G ESR1 mutant cells. Here, we further integrated FOXA1 genomic binding profile with the isogenic ER cistrome, accessible genome and transcriptome data of T47D cell model. FOXA1 redistribution was significantly associated with transcriptomic alterations caused by ESR1 mutations. Furthermore, in ESR1 mutant cells, FOXA1 binding sites less frequently overlapped with ER, and differential gene expression was less associated with the canonical FOXA1-ER axis. Motif analysis revealed a unique enrichment of retinoid X receptor (RXR) motifs in FOXA1 binding sites of ESR1 mutant cells. Consistently, ESR1 mutant cells were more sensitive to growth stimulation with the RXR agonist LG268. The mutant-specific response was dependent on two RXR isoforms, RXR-α and RXR-β, with a stronger dependency on the latter. In addition, T3, the agonist of thyroid receptor also showed a similar growth-promoting effect in ESR1 mutant cells. Importantly, RXR antagonist HX531 blocked growth of ESR1 mutant cells and a patient derived xenograft (PDX)-derived organoid with an ESR1 D538G mutation. Collectively, our data support evidence for a stronger RXR response associated with FOXA1 reprogramming in ESR1 mutant cells, suggesting development of therapeutic strategies targeting RXR pathways in breast tumors with ESR1 mutation. Implications: It provides comprehensive characterization of the role of FOXA1 in ESR1 mutant breast cancer and potential therapeutic strategy through blocking RXR activation.
  13. Nucleic Acids Res. 2023 Mar 17. pii: gkad180. [Epub ahead of print]
      The Paf1 complex (Paf1C) is a conserved transcription elongation factor that regulates transcription elongation efficiency, facilitates co-transcriptional histone modifications, and impacts molecular processes linked to RNA synthesis, such as polyA site selection. Coupling of the activities of Paf1C to transcription elongation requires its association with RNA polymerase II (Pol II). Mutational studies in yeast identified Paf1C subunits Cdc73 and Rtf1 as important mediators of Paf1C association with Pol II on active genes. While the interaction between Rtf1 and the general elongation factor Spt5 is relatively well-understood, the interactions involving Cdc73 have not been fully elucidated. Using a site-specific protein cross-linking strategy in yeast cells, we identified direct interactions between Cdc73 and two components of the Pol II elongation complex, the elongation factor Spt6 and the largest subunit of Pol II. Both of these interactions require the tandem SH2 domain of Spt6. We also show that Cdc73 and Spt6 can interact in vitro and that rapid depletion of Spt6 dissociates Paf1 from chromatin, altering patterns of Paf1C-dependent histone modifications genome-wide. These results reveal interactions between Cdc73 and the Pol II elongation complex and identify Spt6 as a key factor contributing to the occupancy of Paf1C at active genes in Saccharomyces cerevisiae.
  14. Cell Rep. 2023 Mar 13. pii: S2211-1247(23)00255-3. [Epub ahead of print]42(3): 112244
      RNA polymerase II (RNAPII) controls expression of all protein-coding genes and most noncoding loci in higher eukaryotes. Calibrating RNAPII activity requires an assortment of polymerase-associated factors that are recruited at sites of active transcription. The Integrator complex is one of the most elusive transcriptional regulators in metazoans, deemed to be recruited after initiation to help establish and modulate paused RNAPII. Integrator is known to be composed of 14 subunits that assemble and operate in a modular fashion. We employed proteomics and machine-learning structure prediction (AlphaFold2) to identify an additional Integrator subunit, INTS15. We report that INTS15 assembles primarily with the INTS13/14/10 module and interfaces with the Int-PP2A module. Functional genomics analysis further reveals a role for INTS15 in modulating RNAPII pausing at a subset of genes. Our study shows that omics approaches combined with AlphaFold2-based predictions provide additional insights into the molecular architecture of large and dynamic multiprotein complexes.
    Keywords:  AlphaFold2; CP: Neuroscience; Integrator complex; RNA polymerase II; RNA polymerase II pausing; large protein complexes; molecular modeling; omics; pause-release; transcription; transcription factors; transcriptional regulation
  15. PLoS Genet. 2023 Mar 17. 19(3): e1010682
      Histones are essential for chromatin packaging, and histone supply must be tightly regulated as excess histones are toxic. To drive the rapid cell cycles of the early embryo, however, excess histones are maternally deposited. Therefore, soluble histones must be buffered by histone chaperones, but the chaperone necessary to stabilize soluble H3-H4 pools in the Drosophila embryo has yet to be identified. Here, we show that CG8223, the Drosophila homolog of NASP, is a H3-H4-specific chaperone in the early embryo. We demonstrate that, while a NASP null mutant is viable in Drosophila, NASP is maternal effect gene. Embryos laid by NASP mutant mothers have a reduced rate of hatching and show defects in early embryogenesis. Critically, soluble H3-H4 pools are degraded in embryos laid by NASP mutant mothers. Our work identifies NASP as the critical H3-H4 histone chaperone in the Drosophila embryo.
  16. Elife. 2023 Mar 14. pii: e83342. [Epub ahead of print]12
      Transcription factors play a determining role in lineage commitment and cell differentiation. Interferon regulatory factor 8 (IRF8) is a lineage determining transcription factor in hematopoiesis and master regulator of dendritic cells (DC), an important immune cell for immunity and tolerance. IRF8 is prominently upregulated in DC development by autoactivation and controls both DC differentiation and function. However, it is unclear how Irf8 autoactivation is controlled and eventually limited. Here we identified a novel long non-coding RNA transcribed from the +32 kb enhancer downstream of Irf8 transcription start site and expressed specifically in mouse plasmacytoid DC (pDC), referred to as lncIrf8. The lncIrf8 locus interacts with the lrf8 promoter and shows differential epigenetic signatures in pDC versus classical DC type 1 (cDC1). Interestingly, a sequence element of the lncIrf8 promoter, but not lncIrf8 itself, is crucial for mouse pDC and cDC1 differentiation, and this sequence element confers feedback inhibition of Irf8 expression. Taken together, in DC development Irf8 autoactivation is first initiated by flanking enhancers and then second controlled by feedback inhibition through the lncIrf8 promoter element in the +32 kb enhancer. Our work reveals a previously unrecognized negative feedback loop of Irf8 that orchestrates its own expression and thereby controls DC differentiation.
    Keywords:  immunology; inflammation; mouse