bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2022‒09‒11
twenty-one papers selected by
Connor Rogerson
University of Cambridge

  1. Nat Commun. 2022 Sep 08. 13(1): 5281
      The 3D genome has been shown to be organized into modules including topologically associating domains (TADs) and compartments that are primarily defined by spatial contacts from Hi-C. There exists a gap to investigate whether and how the spatial modularity of the chromatin is related to the functional modularity resulting from chromatin activity. Despite histone modifications reflecting chromatin activity, inferring spatial modularity of the genome directly from the histone modification patterns has not been well explored. Here, we report that histone modifications show a modular pattern (referred to as regulation associated modules, RAMs) that reflects spatial chromatin modularity. Enhancer-promoter interactions, loop anchors, super-enhancer clusters and extrachromosomal DNAs (ecDNAs) are found to occur more often within the same RAMs than within the same TADs. Consistently, compared to the TAD boundaries, deletions of RAM boundaries perturb the chromatin structure more severely (may even cause cell death) and somatic variants in cancer samples are more enriched in RAM boundaries. These observations suggest that RAMs reflect a modular organization of the 3D genome at a scale better aligned with chromatin activity, providing a bridge connecting the structural and functional modularity of the genome.
  2. Nat Struct Mol Biol. 2022 Sep 05.
      Heterochromatin assembly, involving histone H3 lysine-9 methylation (H3K9me), is nucleated at specific genomic sites but can self-propagate across extended domains and, indeed, generations. Self-propagation requires Clr4/Suv39h methyltransferase recruitment by pre-existing H3K9 tri-methylation (H3K9me3) to perpetuate H3K9me deposition and is dramatically affected by chromatin context. However, the mechanism priming self-propagation of heterochromatin remains undefined. We show that robust chromatin association of fission yeast class II histone deacetylase Clr3 is necessary and sufficient to support heterochromatin propagation in different chromosomal contexts. Efficient targeting of Clr3, which suppresses histone turnover and maintains H3K9me3, enables self-propagation of an ectopic heterochromatin domain via the Clr4/Suv39h read-write mechanism requiring methylated histones. The deacetylase activity of Clr3 is necessary and, when inactivated, heterochromatin propagation can be recapitulated by removing two major histone acetyltransferases. Our results show that histone deacetylation, a conserved heterochromatin feature, preserves H3K9me3 that transmits epigenetic memory for stable propagation of silenced chromatin domains through multiple generations.
  3. Nat Methods. 2022 Sep 06.
      Rigorously comparing gene expression and chromatin accessibility in the same single cells could illuminate the logic of how coupling or decoupling of these mechanisms regulates fate commitment. Here we present MIRA, probabilistic multimodal models for integrated regulatory analysis, a comprehensive methodology that systematically contrasts transcription and accessibility to infer the regulatory circuitry driving cells along cell state trajectories. MIRA leverages topic modeling of cell states and regulatory potential modeling of individual gene loci. MIRA thereby represents cell states in an efficient and interpretable latent space, infers high-fidelity cell state trees, determines key regulators of fate decisions at branch points and exposes the variable influence of local accessibility on transcription at distinct loci. Applied to epidermal differentiation and embryonic brain development from two different multimodal platforms, MIRA revealed that early developmental genes were tightly regulated by local chromatin landscape whereas terminal fate genes were titrated without requiring extensive chromatin remodeling.
  4. Nat Commun. 2022 Sep 07. 13(1): 5273
      Binding to binding site clusters has yet to be characterized in depth, and the functional relevance of low-affinity clusters remains uncertain. We characterized transcription factor binding to low-affinity clusters in vitro and found that transcription factors can bind concurrently to overlapping sites, challenging the notion of binding exclusivity. Furthermore, small clusters with binding sites an order of magnitude lower in affinity give rise to high mean occupancies at physiologically-relevant transcription factor concentrations. To assess whether the observed in vitro occupancies translate to transcriptional activation in vivo, we tested low-affinity binding site clusters in a synthetic and native gene regulatory network in S. cerevisiae. In both systems, clusters of low-affinity binding sites generated transcriptional output comparable to single or even multiple consensus sites. This systematic characterization demonstrates that clusters of low-affinity binding sites achieve substantial occupancies, and that this occupancy can drive expression in eukaryotic promoters.
  5. Nat Genet. 2022 Sep 07.
      Transcriptional regulation, which integrates chromatin accessibility, transcription factors and epigenetic modifications, is crucial for establishing and maintaining cell identity. The interplay between different epigenetic modifications and its contribution to transcriptional regulation remains elusive. Here, we show that METTL3-mediated RNA N6-methyladenosine (m6A) formation leads to DNA demethylation in nearby genomic loci in normal and cancer cells, which is mediated by the interaction between m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1. Upon recognizing RNA m6A, FXR1 recruits TET1 to genomic loci to demethylate DNA, leading to reprogrammed chromatin accessibility and gene transcription. Therefore, we have characterized a regulatory mechanism of chromatin accessibility and gene transcription mediated by RNA m6A formation coupled with DNA demethylation, highlighting the importance of the crosstalk between RNA m6A and DNA modification in physiologic and pathogenic process.
  6. Nat Genet. 2022 Sep 07.
      Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.
  7. Mol Syst Biol. 2022 09;18(9): e10979
      A major goal in the field of transcriptional regulation is the mapping of changes in the binding of transcription factors to the resultant changes in gene expression. Recently, methods for measuring chromatin accessibility have enabled us to measure changes in accessibility across the genome, which are thought to correspond to transcription factor-binding events. In concert with RNA-sequencing, these data in principle enable such mappings; however, few studies have looked at their concordance over short-duration treatments with specific perturbations. Here, we used tandem, bulk ATAC-seq, and RNA-seq measurements from MCF-7 breast carcinoma cells to systematically evaluate the concordance between changes in accessibility and changes in expression in response to retinoic acid and TGF-β. We found two classes of genes whose expression showed a significant change: those that showed some changes in the accessibility of nearby chromatin, and those that showed virtually no change despite strong changes in expression. The peaks associated with genes in the former group had lower baseline accessibility prior to exposure to signal. Focusing the analysis specifically on peaks with motifs for transcription factors associated with retinoic acid and TGF-β signaling did not reduce the lack of correspondence. Analysis of paired chromatin accessibility and gene expression data from distinct paths along the hematopoietic differentiation trajectory showed a much stronger correspondence, suggesting that the multifactorial biological processes associated with differentiation may lead to changes in chromatin accessibility that reflect rather than driving altered transcriptional status. Together, these results show many gene expression changes can happen independently of changes in the accessibility of local chromatin in the context of a single-factor perturbation.
    Keywords:  RNA-seq and ATAC-seq concordance; chromatin accessibility; gene regulation; multi-omics integration; signal response
  8. Mol Syst Biol. 2022 Sep;18(9): e11002
      Regulation of gene expression is linked to the organization of the genome. With age, chromatin alterations occur on all levels of genome organization, accompanied by changes in the gene expression profile. However, little is known about the changes in the level of transcriptional regulation. Here, we used a multi-omics approach and integrated ATAC-, RNA- and NET-seq to identify age-related changes in the chromatin landscape of murine liver and to investigate how these are linked to transcriptional regulation. We provide the first systematic inventory of the connection between aging, chromatin accessibility, and transcriptional regulation in a whole tissue. Aging in murine liver is characterized by an increase in chromatin accessibility at promoter regions, but not in an increase in transcriptional output. Instead, aging is accompanied by a decrease in promoter-proximal pausing of RNA polymerase II (Pol II), while initiation of transcription is not decreased as assessed by RNA polymerase mapping using CUT&RUN. Based on the data reported, we propose that these age-related changes in transcriptional regulation are due to a reduced stability of the pausing complex.
    Keywords:  aging; chromatin architecture; nascent transcription; promoter-proximal pausing
  9. PLoS Comput Biol. 2022 Sep 07. 18(9): e1010430
      Genetic risk for complex traits is strongly enriched in non-coding genomic regions involved in gene regulation, especially enhancers. However, we lack adequate tools to connect the characteristics of these disruptions to genetic risk. Here, we propose RWAS (Regulome Wide Association Study), a new application of the MAGMA software package to identify the characteristics of enhancers that contribute to genetic risk for disease. RWAS involves three steps: (i) assign genotyped SNPs to cell type- or tissue-specific regulatory features (e.g., enhancers); (ii) test associations of each regulatory feature with a trait of interest for which genome-wide association study (GWAS) summary statistics are available; (iii) perform enhancer-set enrichment analyses to identify quantitative or categorical features of regulatory elements that are associated with the trait. These steps are implemented as a novel application of MAGMA, a tool originally developed for gene-based GWAS analyses. Applying RWAS to interrogate genetic risk for schizophrenia, we discovered a class of risk-associated AT-rich enhancers that are active in the developing brain and harbor binding sites for multiple transcription factors with neurodevelopmental functions. RWAS utilizes open-source software, and we provide a comprehensive collection of annotations for tissue-specific enhancer locations and features, including their evolutionary conservation, AT content, and co-localization with binding sites for hundreds of TFs. RWAS will enable researchers to characterize properties of regulatory elements associated with any trait of interest for which GWAS summary statistics are available.
  10. BMC Bioinformatics. 2022 Sep 05. 23(1): 364
      BACKGROUND: Pathogenic mutations in genes that control chromatin function have been implicated in rare genetic syndromes. These chromatin modifiers exhibit extraordinary diversity in the scale of the epigenetic changes they affect, from single basepair modifications by DNMT1 to whole genome structural changes by PRM1/2. Patterns of DNA methylation are related to a diverse set of epigenetic features across this full range of epigenetic scale, making DNA methylation valuable for mapping regions of general epigenetic dysregulation. However, existing methods are unable to accurately identify regions of differential methylation across this full range of epigenetic scale directly from DNA methylation data.RESULTS: To address this, we developed DMRscaler, a novel method that uses an iterative windowing procedure to capture regions of differential DNA methylation (DMRs) ranging in size from single basepairs to whole chromosomes. We benchmarked DMRscaler against several DMR callers in simulated and natural data comparing XX and XY peripheral blood samples. DMRscaler was the only method that accurately called DMRs ranging in size from 100 bp to 1 Mb (pearson's r = 0.94) and up to 152 Mb on the X-chromosome. We then analyzed methylation data from rare-disease cohorts that harbor chromatin modifier gene mutations in NSD1, EZH2, and KAT6A where DMRscaler identified novel DMRs spanning gene clusters involved in development.
    CONCLUSION: Taken together, our results show DMRscaler is uniquely able to capture the size of DMR features across the full range of epigenetic scale and identify novel, co-regulated regions that drive epigenetic dysregulation in human disease.
    Keywords:  Arboleda-Tham syndrome; Chromatin; Epigenome; Rare disease; Scale, DNA methylation; Sotos syndrome; Weaver syndrome
  11. Cell Metab. 2022 Sep 06. pii: S1550-4131(22)00357-6. [Epub ahead of print]34(9): 1394-1409.e4
    HPAP Consortium
      Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.
    Keywords:  3D chromatin maps; acinar cell; alpha cell; beta cell; islets of Langerhans; type 2 diabetes
  12. Mol Cancer. 2022 Sep 03. 21(1): 175
      BACKGROUND: Epigenetic programming during development is essential for determining cell lineages, and alterations in this programming contribute to the initiation of embryonal tumour development. In neuroblastoma, neural crest progenitors block their course of natural differentiation into sympathoadrenergic cells, leading to the development of aggressive and metastatic paediatric cancer. Research of the epigenetic regulators responsible for oncogenic epigenomic networks is crucial for developing new epigenetic-based therapies against these tumours. Mammalian switch/sucrose non-fermenting (mSWI/SNF) ATP-dependent chromatin remodelling complexes act genome-wide translating epigenetic signals into open chromatin states. The present study aimed to understand the contribution of mSWI/SNF to the oncogenic epigenomes of neuroblastoma and its potential as a therapeutic target.METHODS: Functional characterisation of the mSWI/SNF complexes was performed in neuroblastoma cells using proteomic approaches, loss-of-function experiments, transcriptome and chromatin accessibility analyses, and in vitro and in vivo assays.
    RESULTS: Neuroblastoma cells contain three main mSWI/SNF subtypes, but only BRG1-associated factor (BAF) complex disruption through silencing of its key structural subunits, ARID1A and ARID1B, impairs cell proliferation by promoting cell cycle blockade. Genome-wide chromatin remodelling and transcriptomic analyses revealed that BAF disruption results in the epigenetic repression of an extensive invasiveness-related expression program involving integrins, cadherins, and key mesenchymal regulators, thereby reducing adhesion to the extracellular matrix and the subsequent invasion in vitro and drastically inhibiting the initiation and growth of neuroblastoma metastasis in vivo.
    CONCLUSIONS: We report a novel ATPase-independent role for the BAF complex in maintaining an epigenomic program that allows neuroblastoma invasiveness and metastasis, urging for the development of new BAF pharmacological structural disruptors for therapeutic exploitation in metastatic neuroblastoma.
    Keywords:  Cancer; Chromatin remodelling; Epigenetics; Epigenomics; Metastasis; Neuroblastoma; SWI/SNF
  13. Nat Commun. 2022 Sep 06. 13(1): 5253
      The proximal tubule is a key regulator of kidney function and glucose metabolism. Diabetic kidney disease leads to proximal tubule injury and changes in chromatin accessibility that modify the activity of transcription factors involved in glucose metabolism and inflammation. Here we use single nucleus RNA and ATAC sequencing to show that diabetic kidney disease leads to reduced accessibility of glucocorticoid receptor binding sites and an injury-associated expression signature in the proximal tubule. We hypothesize that chromatin accessibility is regulated by genetic background and closely-intertwined with metabolic memory, which pre-programs the proximal tubule to respond differently to external stimuli. Glucocorticoid excess has long been known to increase risk for type 2 diabetes, which raises the possibility that glucocorticoid receptor inhibition may mitigate the adverse metabolic effects of diabetic kidney disease.
  14. Sci Adv. 2022 Sep 09. 8(36): eabm2427
      TET (ten-eleven translocation) enzymes catalyze the oxidation of 5-methylcytosine bases in DNA, thus driving active and passive DNA demethylation. Here, we report that the catalytic domain of mammalian TET enzymes favor CGs embedded within basic helix-loop-helix and basic leucine zipper domain transcription factor-binding sites, with up to 250-fold preference in vitro. Crystal structures and molecular dynamics calculations show that sequence preference is caused by intrasubstrate interactions and CG flanking sequence indirectly affecting enzyme conformation. TET sequence preferences are physiologically relevant as they explain the rates of DNA demethylation in TET-rescue experiments in culture and in vivo within the zygote and germ line. Most and least favorable TET motifs represent DNA sites that are bound by methylation-sensitive immediate-early transcription factors and octamer-binding transcription factor 4 (OCT4), respectively, illuminating TET function in transcriptional responses and pluripotency support.
  15. Oncogene. 2022 Sep 06.
      Overexpression of MYC is a genuine cancer driver in lymphomas and related to poor prognosis. However, therapeutic targeting of the transcription factor MYC remains challenging. Here, we show that inhibition of the histone deacetylase 6 (HDAC6) using the HDAC6 inhibitor Marbostat-100 (M-100) reduces oncogenic MYC levels and prevents lymphomagenesis in a mouse model of MYC-induced aggressive B-cell lymphoma. M-100 specifically alters protein-protein interactions by switching the acetylation state of HDAC6 substrates, such as tubulin. Tubulin facilitates nuclear import of MYC, and MYC-dependent B-cell lymphoma cells rely on continuous import of MYC due to its high turn-over. Acetylation of tubulin impairs this mechanism and enables proteasomal degradation of MYC. M-100 targets almost exclusively B-cell lymphoma cells with high levels of MYC whereas non-tumor cells are not affected. M-100 induces massive apoptosis in human and murine MYC-overexpressing B-cell lymphoma cells. We identified the heat-shock protein DNAJA3 as an interactor of tubulin in an acetylation-dependent manner and overexpression of DNAJA3 resulted in a pronounced degradation of MYC. We propose a mechanism by which DNAJA3 associates with hyperacetylated tubulin in the cytoplasm to control MYC turnover. Taken together, our data demonstrate a beneficial role of HDAC6 inhibition in MYC-dependent B-cell lymphoma.
  16. Nat Commun. 2022 Sep 05. 13(1): 5217
      Cortical interneurons originating in the embryonic medial ganglionic eminence (MGE) diverge into a range of different subtypes found in the adult mouse cerebral cortex. The mechanisms underlying this divergence and the timing when subtype identity is set up remain unclear. We identify the highly conserved transcriptional co-factor MTG8 as being pivotal in the development of a large subset of MGE cortical interneurons that co-expresses Somatostatin (SST) and Neuropeptide Y (NPY). MTG8 interacts with the pan-MGE transcription factor LHX6 and together the two factors are sufficient to promote expression of critical cortical interneuron subtype identity genes. The SST-NPY cortical interneuron fate is initiated early, well before interneurons migrate into the cortex, demonstrating an early onset specification program. Our findings suggest that transcriptional co-factors and modifiers of generic lineage specification programs may hold the key to the emergence of cortical interneuron heterogeneity from the embryonic telencephalic germinal zones.
  17. EMBO Rep. 2022 Sep 06. e54421
      The self-renewal and differentiation potential of embryonic stem cells (ESCs) is maintained by the regulated expression of core pluripotency factors. Expression levels of the core pluripotency factor Nanog are tightly regulated by a negative feedback autorepression loop. However, it remains unclear how ESCs perceive NANOG levels and execute autorepression. Here, we show that a dose-dependent induction of Fgfbp1 and Fgfr2 by NANOG activates autocrine-mediated ERK signaling in Nanog-high cells to trigger autorepression. pERK recruits NONO to the Nanog locus to repress transcription by preventing POL2 loading. This Nanog autorepression process establishes a self-perpetuating reciprocal NANOG-pERK regulatory circuit. We further demonstrate that this reciprocal regulatory circuit induces pERK heterogeneity and ERK signaling dynamics in pluripotent stem cells. Collectively our data suggest that NANOG induces Fgfr2 and Fgfbp1 to activate ERK signaling in Nanog-high cells to establish a NANOG-pERK reciprocal regulatory circuit. This circuit regulates ERK signaling dynamics and Nanog autoregulation in pluripotent cells.
    Keywords:  ERK; ESC; FGFR2; Nanog; autoregulation
  18. Nat Commun. 2022 09 06. 13(1): 4487
      Clinical archives of patient material near-exclusively consist of formalin-fixed and paraffin-embedded (FFPE) blocks. The ability to precisely characterise mutational signatures from FFPE-derived DNA has tremendous translational potential. However, sequencing of DNA derived from FFPE material is known to be riddled with artefacts. Here we derive genome-wide mutational signatures caused by formalin fixation. We show that the FFPE-signature is highly similar to signature 30 (the signature of Base Excision Repair deficiency due to NTHL1 mutations), and chemical repair of DNA lesions leads to a signature highly similar to signature 1 (clock-like signature due to spontaneous deamination of methylcytosine). We demonstrate that using uncorrected mutational catalogues of FFPE samples leads to major mis-assignment of signature activities. To correct for this, we introduce FFPEsig, a computational algorithm to rectify the formalin-induced artefacts in the mutational catalogue. We demonstrate that FFPEsig enables accurate mutational signature analysis both in simulated and whole-genome sequenced FFPE cancer samples. FFPEsig thus provides an opportunity to unlock additional clinical potential of archival patient tissues.
  19. Comput Biol Med. 2022 Aug 17. pii: S0010-4825(22)00713-2. [Epub ahead of print]149 105993
      Transcription factors (TFs) can regulate gene expression by recognizing specific cis-regulatory elements in DNA sequences. TF-DNA binding prediction has become a fundamental step in comprehending the underlying cis-regulation mechanism. Since a particular genome region is bound depending on multiple features, such as the arrangement of nucleotides, DNA shape, and an epigenetic mechanism, many researchers attempt to develop computational methods to predict TF binding sites (TFBSs) based on various genomic features. This paper provides a comprehensive compendium to better understand TF-DNA binding from genomic features. We first summarize the commonly used datasets and data processing manners. Subsequently, we classify current deep learning methods in TFBS prediction according to their utilized genomic features and analyze each technique's merit and weakness. Furthermore, we illustrate the functional consequences characterization of TF-DNA binding by prioritizing noncoding variants in identified motif instances. Finally, the challenges and opportunities of deep learning in TF-DNA binding prediction are discussed. This survey can bring valuable insights for researchers to study the modeling of TF-DNA binding.
    Keywords:  Deep learning; Genomic features; Motif discovery; Noncoding variant; TF-DNA binding
  20. BMC Bioinformatics. 2022 Sep 05. 23(1): 363
      BACKGROUND: Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators.RESULTS: SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels.
    CONCLUSIONS: We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at .
    Keywords:  Composite subgraphs; Gene function prediction; Gene regulation; Gene regulatory networks; Hypoxia; Modules; Multi-edge networks; Multi-omics; Network analysis; Topology
  21. Cell Rep. 2022 Sep 06. pii: S2211-1247(22)01141-X. [Epub ahead of print]40(10): 111317
      N6-Methyladenosine (m6A), the most abundant internal mRNA modification, affects multiple steps in gene expression. Mechanistically, the binding of YTHDF2 to m6A on mRNAs elicits rapid mRNA degradation by recruiting several RNA degrading enzymes. Here, we show that N1-methyladenosine (m1A), another type of RNA modification, accelerates rapid m6A RNA degradation. We identify HRSP12 as an RNA-binding protein that recognizes m1A. The binding of HRSP12 to m1A promotes efficient interaction of YTHDF2 with m6A, consequently facilitating endoribonucleolytic cleavage via the RNase P/MRP complex. Transcriptome-wide analyses also reveal that mRNAs harboring both m1A and m6A are downregulated in an HRSP12-dependent manner compared with mRNAs harboring m6A only. Accordingly, a subset of endogenous circular RNAs that harbor m6A and associate with YTHDF2 in an HRSP12-dependent manner is also subjected to m1A-facilitated rapid degradation. Together, our observations provide compelling evidence for crosstalk between different RNA modifications.
    Keywords:  CP: Molecular biology; HRSP12; N(1)-methyladenosine; N(6)-methyladenosine; RNase P/MRP; YTHDF2; m(1)A; m(6)A; mRNA decay