bims-crepig Biomed News
on Chromatin regulation and epigenetics in cell fate and cancer
Issue of 2022–06–12
25 papers selected by
Connor Rogerson, University of Cambridge



  1. Cell Rep. 2022 Jun 07. pii: S2211-1247(22)00710-0. [Epub ahead of print]39(10): 110928
      TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, TET1 catalytic activity-independent function in regulating bivalent genes is not well understood. Using a proteomics approach, we map the TET1 interactome in ESCs and identify PSPC1 as a TET1 partner. Genome-wide location analysis reveals that PSPC1 functionally associates with TET1 and Polycomb repressive complex-2 (PRC2). We establish that PSPC1 and TET1 repress, and the lncRNA Neat1 activates, bivalent gene expression. In ESCs, Neat1 is preferentially bound to PSPC1 alongside its PRC2 association at bivalent promoters. During the ESC-to-epiblast-like stem cell (EpiLC) transition, PSPC1 and TET1 maintain PRC2 chromatin occupancy at bivalent gene promoters, while Neat1 facilitates the activation of certain bivalent genes by promoting PRC2 binding to their mRNAs. Our study demonstrates a TET1-PSPC1-Neat1 molecular axis that modulates PRC2-binding affinity to chromatin and bivalent gene transcripts in controlling stem cell bivalency.
    Keywords:  CP: Molecular biology; CP: Stem cell research; ESC; Neat1; PRC2; PSPC1; RNA-binding proteins; TET1; bivalent genes; catalytic activity independent; formative pluripotency; pluripotent state transition
    DOI:  https://doi.org/10.1016/j.celrep.2022.110928
  2. Genome Biol. 2022 Jun 10. 23(1): 126
      Existing methods for computational prediction of transcription factor (TF) binding sites evaluate genomic regions with similarity to known TF sequence preferences. Most TF binding sites, however, do not resemble known TF sequence motifs, and many TFs are not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of individual TFs in new cell types, integrating learned associations with gene expression and binding, TF binding sites from other cell types, and chromatin accessibility data in the new cell type. This approach outperforms methods that predict TF binding solely based on sequence preference, predicting binding for 36 TFs (MCC>0.3).
    DOI:  https://doi.org/10.1186/s13059-022-02690-2
  3. Nat Genet. 2022 Jun 06.
      Posttranslational modifications of histones (PTMs) are associated with specific chromatin and gene expression states1,2. Although studies in Drosophila melanogaster have revealed phenotypic associations between chromatin-modifying enzymes and their histone substrates, comparable studies in mammalian models do not exist3-5. Here, we use CRISPR base editing in mouse embryonic stem cells (mESCs) to address the regulatory role of lysine 27 of histone H3 (H3K27), a substrate for Polycomb repressive complex 2 (PRC2)-mediated methylation and CBP/EP300-mediated acetylation6,7. By generating pan-H3K27R (pK27R) mutant mESCs, where all 28 alleles of H3.1, H3.2 and H3.3 have been mutated, we demonstrate similarity in transcription patterns of genes and differentiation to PRC2-null mutants. Moreover, H3K27 acetylation is not essential for gene derepression linked to loss of H3K27 methylation, or de novo activation of genes during cell-fate transition to epiblast-like cells (EpiLCs). In conclusion, our results show that H3K27 is an essential substrate for PRC2 in mESCs, whereas other PTMs in addition to H3K27 acetylation are likely involved in mediating CBP/EP300 function. Our work demonstrates the feasibility of large-scale multicopy gene editing to interrogate histone PTM function in mammalian cells.
    DOI:  https://doi.org/10.1038/s41588-022-01091-2
  4. Nat Commun. 2022 Jun 07. 13(1): 3263
      Enhancers are key regulatory elements that govern gene expression programs in response to developmental signals. However, how multiple enhancers arrange in the 3D-space to control the activation of a specific promoter remains unclear. To address this question, we exploited our previously characterized TGFβ-response model, the neural stem cells, focusing on a ~374 kb locus where enhancers abound. Our 4C-seq experiments reveal that the TGFβ pathway drives the assembly of an enhancer-cluster and precise gene activation. We discover that the TGFβ pathway coactivator JMJD3 is essential to maintain these structures. Using live-cell imaging techniques, we demonstrate that an intrinsically disordered region contained in JMJD3 is involved in the formation of phase-separated biomolecular condensates, which are found in the enhancer-cluster. Overall, in this work we uncover novel functions for the coactivator JMJD3, and we shed light on the relationships between the 3D-conformation of the chromatin and the TGFβ-driven response during mammalian neurogenesis.
    DOI:  https://doi.org/10.1038/s41467-022-30614-y
  5. Nat Commun. 2022 Jun 06. 13(1): 3131
      Human pluripotent stem cell differentiation towards hematopoietic progenitor cell can serve as an in vitro model for human embryonic hematopoiesis, but the dynamic change of epigenome and transcriptome remains elusive. Here, we systematically profile the chromatin accessibility, H3K4me3 and H3K27me3 modifications, and the transcriptome of intermediate progenitors during hematopoietic progenitor cell differentiation in vitro. The integrative analyses reveal sequential opening-up of regions for the binding of hematopoietic transcription factors and stepwise epigenetic reprogramming of bivalent genes. Single-cell analysis of cells undergoing the endothelial-to-hematopoietic transition and comparison with in vivo hemogenic endothelial cells reveal important features of in vitro and in vivo hematopoiesis. We find that JUNB is an essential regulator for hemogenic endothelium specialization and endothelial-to-hematopoietic transition. These studies depict an epigenomic roadmap from human pluripotent stem cells to hematopoietic progenitor cells, which may pave the way to generate hematopoietic progenitor cells with improved developmental potentials.
    DOI:  https://doi.org/10.1038/s41467-022-30789-4
  6. Nature. 2022 Jun 08.
      Large-scale human genetic data1-3 have shown that cancer mutations display strong tissue-selectivity, but how this selectivity arises remains unclear. Here, using experimental models, functional genomics and analyses of patient samples, we demonstrate that the lineage transcription factor paired box 8 (PAX8) is required for oncogenic signalling by two common genetic alterations that cause clear cell renal cell carcinoma (ccRCC) in humans: the germline variant rs7948643 at 11q13.3 and somatic inactivation of the von Hippel-Lindau tumour suppressor (VHL)4-6. VHL loss, which is observed in about 90% of ccRCCs, can lead to hypoxia-inducible factor 2α (HIF2A) stabilization6,7. We show that HIF2A is preferentially recruited to PAX8-bound transcriptional enhancers, including a pro-tumorigenic cyclin D1 (CCND1) enhancer that is controlled by PAX8 and HIF2A. The ccRCC-protective allele C at rs7948643 inhibits PAX8 binding at this enhancer and downstream activation of CCND1 expression. Co-option of a PAX8-dependent physiological programme that supports the proliferation of normal renal epithelial cells is also required for MYC expression from the ccRCC metastasis-associated amplicons at 8q21.3-q24.3 (ref. 8). These results demonstrate that transcriptional lineage factors are essential for oncogenic signalling and that they mediate tissue-specific cancer risk associated with somatic and inherited genetic variants.
    DOI:  https://doi.org/10.1038/s41586-022-04809-8
  7. Gene. 2022 Jun 06. pii: S0378-1119(22)00459-0. [Epub ahead of print] 146640
      While enhancers in a particular tissue coordinately fulfill regulatory functions, these functions are heterogeneous in nature and comprise of multiple enhancer subclasses and the associated regulatory mechanisms. In this work, we used multiple cell lines to identify enhancer subclasses linked to development, differentiation, and cellular identity. We found that enhancer functional heterogeneity during development encompasses subclasses of ubiquitous functions (11%), development specific regulatory activity (62%), and chromatin interactions (12%). In differentiated cell lines, ubiquitous enhancers (10%) stay active across multiple cell lines.They are accompanied by a large enhancer subclass (ranging from 33% to 63%) with functions specific to the corresponding lineage. The remaining enhancers (27-40%) establish regulatory chromatin structure and facilitate interactions of cell type-specific enhancers with their target promoters. In addition to specialized functions of cell type-specific enhancers, we show that proper accounting of enhancer heterogeneity leads to a 10% increase in accuracy of enhancer classification, which significantly improves the modeling of enhancers and identification of underlying regulatory mechanisms. In summary, our observations suggest that although cell type-specific enhancers are heterogeneous and coordinate different regulatory programs, enhancers from different cell lines maintain common categories of functional groups across developmental and differentiation stages, indicating a higher order rule followed by enhancer-gene regulation.
    DOI:  https://doi.org/10.1016/j.gene.2022.146640
  8. BMC Bioinformatics. 2022 Jun 03. 23(1): 212
       BACKGROUND: Transcription factors (TFs) bind regulatory DNA regions with sequence specificity, form complexes and regulate gene expression. In cooperative TF-TF binding, two transcription factors bind onto a shared DNA binding site as a pair. Previous work has demonstrated pairwise TF-TF-DNA interactions with position weight matrices (PWMs), which may however not sufficiently take into account the complexity and flexibility of pairwise binding.
    RESULTS: We propose two random forest (RF) methods for joint TF-TF binding site prediction: ComBind and JointRF. We train models with previously published large-scale CAP-SELEX DNA libraries, which comprise DNA sequences enriched for binding of a selected TF pair. JointRF builds a random forest with sub-sequences selected from CAP-SELEX DNA reads with previously proposed pairwise PWM. JointRF outperforms (area under receiver operating characteristics curve, AUROC, 0.75) the current state-of-the-art method i.e. orientation and spacing specific pairwise PWMs (AUROC 0.59). Thus, JointRF may be utilized to improve prediction accuracy for pre-determined binding preferences. However, pairwise TF binding is currently considered flexible; a pair may bind DNA with different orientations and amounts of dinucleotide gaps or overlap between the two motifs. Thus, we developed ComBind, which utilizes random forests by considering simultaneously multiple orientations and spacings of the two factors. Our approach outperforms (AUROC 0.78) PWMs, as well as JointRF (p<0.00195). ComBind provides an approach for predicting TF-TF binding sites without prior knowledge on pairwise binding preferences. However, more research is needed to assess ComBind eligibility for practical applications.
    CONCLUSIONS: Random forest is well suited for modeling pairwise TF-TF-DNA binding specificities, and ComBind provides an improvement to pairwise binding site prediction accuracy.
    Keywords:  DNA binding site; Random forest; Transcription factor pair
    DOI:  https://doi.org/10.1186/s12859-022-04734-7
  9. Nat Commun. 2022 Jun 07. 13(1): 3145
      Knowledge gaps remain on how nucleosome organization and dynamic reorganization are governed by specific pioneer factors in a genome-wide manner. In this study, we generate over three billons of multi-omics sequencing data to exploit dynamic nucleosome landscape governed by pioneer factors (PFs), FOXA1 and GATA2. We quantitatively define nine functional nucleosome states each with specific characteristic nucleosome footprints in LNCaP prostate cancer cells. Interestingly, we observe dynamic switches among nucleosome states upon androgen stimulation, accompanied by distinct differential (gained or lost) binding of FOXA1, GATA2, H1 as well as many other coregulators. Intriguingly, we reveal a noncanonical pioneer model of GATA2 that it initially functions as a PF binding at the edge of a nucleosome in an inaccessible crowding array. Upon androgen stimulation, GATA2 re-configures an inaccessible to accessible nucleosome state and subsequently acts as a master transcription factor either directly or recruits signaling specific transcription factors to enhance WNT signaling in an androgen receptor (AR)-independent manner. Our data elicit a pioneer and master dual role of GATA2 in mediating nucleosome dynamics and enhancing downstream signaling pathways. Our work offers structural and mechanistic insight into the dynamics of pioneer factors governing nucleosome reorganization.
    DOI:  https://doi.org/10.1038/s41467-022-30960-x
  10. Nucleic Acids Res. 2022 Jun 07. pii: gkac450. [Epub ahead of print]
      Human Positive Coactivator 4 (PC4) is a multifaceted chromatin protein involved in diverse cellular processes including genome organization, transcription regulation, replication, DNA repair and autophagy. PC4 exists as a phospho-protein in cells which impinges on its acetylation by p300 and thereby affects its transcriptional co-activator functions via double-stranded DNA binding. Despite the inhibitory effects, the abundance of phosphorylated PC4 in cells intrigued us to investigate its role in chromatin functions in a basal state of the cell. We found that casein kinase-II (CKII)-mediated phosphorylation of PC4 is critical for its interaction with linker histone H1. By employing analytical ultracentrifugation and electron microscopy imaging of in vitro reconstituted nucleosomal array, we observed that phospho-mimic (PM) PC4 displays a superior chromatin condensation potential in conjunction with linker histone H1. ATAC-sequencing further unveiled the role of PC4 phosphorylation to be critical in inducing chromatin compaction of a wide array of coding and non-coding genes in vivo. Concordantly, phospho-PC4 mediated changes in chromatin accessibility led to gene repression and affected global histone modifications. We propose that the abundance of PC4 in its phosphorylated state contributes to genome compaction contrary to its co-activator function in driving several cellular processes like gene transcription and autophagy.
    DOI:  https://doi.org/10.1093/nar/gkac450
  11. Nucleic Acids Res. 2022 Jun 10. pii: gkac493. [Epub ahead of print]
      Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 localizes to a unique set of promoters and enhancers to trans-activate oxidative stress-specific genes. Taken together, we show that HSFs function as multi-stress-responsive factors that activate distinct genes and enhancers when encountering changes in temperature and redox state.
    DOI:  https://doi.org/10.1093/nar/gkac493
  12. Nat Genet. 2022 Jun 09.
      Mammalian SWI/SNF (mSWI/SNF) ATP-dependent chromatin remodeling complexes establish and maintain chromatin accessibility and gene expression, and are frequently perturbed in cancer. Clear cell meningioma (CCM), an aggressive tumor of the central nervous system, is uniformly driven by loss of SMARCE1, an integral subunit of the mSWI/SNF core. Here, we identify a structural role for SMARCE1 in selectively stabilizing the canonical BAF (cBAF) complex core-ATPase module interaction. In CCM, cBAF complexes fail to stabilize on chromatin, reducing enhancer accessibility, and residual core module components increase the formation of BRD9-containing non-canonical BAF (ncBAF) complexes. Combined attenuation of cBAF function and increased ncBAF complex activity generates the CCM-specific gene expression signature, which is distinct from that of NF2-mutated meningiomas. Importantly, SMARCE1-deficient cells exhibit heightened sensitivity to small-molecule inhibition of ncBAF complexes. These data inform the function of a previously elusive SWI/SNF subunit and suggest potential therapeutic approaches for intractable SMARCE1-deficient CCM tumors.
    DOI:  https://doi.org/10.1038/s41588-022-01077-0
  13. Nat Commun. 2022 Jun 09. 13(1): 3190
      Histone marks, carriers of epigenetic information, regulate gene expression. In mammalian cells, H3K36me3 is mainly catalyzed by SETD2 at gene body regions. Here, we find that in addition to gene body regions, H3K36me3 is enriched at promoters in primary cells. Through screening, we identify SMYD5, which is recruited to chromatin by RNA polymerase II, as a methyltransferase catalyzing H3K36me3 at promoters. The enzymatic activity of SMYD5 is dependent on its C-terminal glutamic acid-rich domain. Overexpression of full-length Smyd5, but not the C-terminal domain-truncated Smyd5, restores H3K36me3 at promoters in Smyd5 knockout cells. Furthermore, elevated Smyd5 expression contributes to tumorigenesis in liver hepatocellular carcinoma. Together, our findings identify SMYD5 as the H3K36me3 methyltransferase at promoters that regulates gene expression, providing insights into the localization and function of H3K36me3.
    DOI:  https://doi.org/10.1038/s41467-022-30940-1
  14. Elife. 2022 Jun 09. pii: e75115. [Epub ahead of print]11
      In mammalian cells genes that are in close proximity can be transcriptionally coupled: silencing or activating one gene can affect its neighbors. Understanding these dynamics is important for natural processes, such as heterochromatin spreading during development and aging, and when designing synthetic gene regulation circuits. Here, we systematically dissect this process in single cells by recruiting and releasing repressive chromatin regulators at dual-gene synthetic reporters, and measuring how fast gene silencing and reactivation spread as a function of intergenic distance and configuration of insulator elements. We find that silencing by KRAB, associated with histone methylation, spreads between two genes within hours, with a time delay that increases with distance. This fast KRAB-mediated spreading is not blocked by the classical cHS4 insulators. Silencing by histone deacetylase HDAC4 of the upstream gene can also facilitate background silencing of the downstream gene by PRC2, but with a days-long delay that does not change with distance. This slower silencing can sometimes be stopped by insulators. Gene reactivation of neighboring genes is also coupled, with strong promoters and insulators determining the order of reactivation. Our data can be described by a model of multi-gene regulation that builds upon previous knowledge of heterochromatin spreading, where both gene silencing and gene reactivation can act at a distance, allowing for coordinated dynamics via chromatin regulator recruitment.
    Keywords:  chromatin regulation; chromosomes; epigenetics; gene expression; human; insulators; mammalian synthetic biology; spatial-temporal dynamics
    DOI:  https://doi.org/10.7554/eLife.75115
  15. Mol Cell. 2022 May 25. pii: S1097-2765(22)00444-0. [Epub ahead of print]
      The proper function of the genome relies on spatial organization of DNA, RNA, and proteins, but how transcription contributes to the organization is unclear. Here, we show that condensates induced by transcription inhibition (CITIs) drastically alter genome spatial organization. CITIs are formed by SFPQ, NONO, FUS, and TAF15 in nucleoli upon inhibition of RNA polymerase II (RNAPII). Mechanistically, RNAPII inhibition perturbs ribosomal RNA (rRNA) processing, releases rRNA-processing factors from nucleoli, and enables SFPQ to bind rRNA. While accumulating in CITIs, SFPQ/TAF15 remain associated with active genes and tether active chromatin to nucleoli. In the presence of DNA double-strand breaks (DSBs), the altered chromatin compartmentalization induced by RNAPII inhibition increases gene fusions in CITIs and stimulates the formation of fusion oncogenes. Thus, proper RNAPII transcription and rRNA processing prevent the altered compartmentalization of active chromatin in CITIs, suppressing the generation of gene fusions from DSBs.
    Keywords:  chromatin; compartment; gene fusion; nucleolus; phase separation; rRNA; transcription
    DOI:  https://doi.org/10.1016/j.molcel.2022.05.010
  16. Nat Commun. 2022 Jun 08. 13(1): 3177
      The assembly and function of the yeast general transcription factor TFIID complex requires specific contacts between its Taf14 and Taf2 subunits, however, the mechanism underlying these contacts remains unclear. Here, we determined the molecular and structural basis by which the YEATS and ET domains of Taf14 bind to the C-terminal tail of Taf2 and identified a unique DNA-binding activity of the linker region connecting the two domains. We show that in the absence of ligands the linker region of Taf14 is occluded by the surrounding domains, and therefore the DNA binding function of Taf14 is autoinhibited. Binding of Taf2 promotes a conformational rearrangement in Taf14, resulting in a release of the linker for the engagement with DNA and the nucleosome. Genetic in vivo data indicate that the association of Taf14 with both Taf2 and DNA is essential for transcriptional regulation. Our findings provide a basis for deciphering the role of individual TFIID subunits in mediating gene transcription.
    DOI:  https://doi.org/10.1038/s41467-022-30937-w
  17. Nat Cancer. 2022 Jun 06.
      A complete chart of the chromatin regulatory elements of immune cells in patients with cancer and their dynamic behavior is necessary to understand the developmental fates and guide therapeutic strategies. Here, we map the single-cell chromatin landscape of immune cells from blood, normal tumor-adjacent kidney tissue and malignant tissue from patients with early-stage clear cell renal cell carcinoma (ccRCC). We catalog the T cell states dictated by tissue-specific and developmental-stage-specific chromatin accessibility patterns, infer key chromatin regulators and observe rewiring of regulatory networks in the progression to dysfunction in CD8+ T cells. Unexpectedly, among the transcription factors orchestrating the path to dysfunction, NF-κB is associated with a pro-apoptotic program in late stages of dysfunction in tumor-infiltrating CD8+ T cells. Importantly, this epigenomic profiling stratified ccRCC patients based on a NF-κB-driven pro-apoptotic signature. This study provides a rich resource for understanding the functional states and regulatory dynamics of immune cells in ccRCC.
    DOI:  https://doi.org/10.1038/s43018-022-00391-0
  18. Nat Commun. 2022 Jun 09. 13(1): 3218
      Cohesin, an essential protein complex for chromosome segregation, regulates transcription through a variety of mechanisms. It is not a trivial task to assign diverse cohesin functions. Moreover, the context-specific roles of cohesin-mediated interactions, especially on intragenic regions, have not been thoroughly investigated. Here we perform a comprehensive characterization of cohesin binding sites in several human cell types. We integrate epigenomic, transcriptomic and chromatin interaction data to explore the context-specific functions of intragenic cohesin related to gene activation. We identify a specific subset of cohesin binding sites, decreased intragenic cohesin sites (DICs), which are negatively correlated with transcriptional regulation. A subgroup of DICs is enriched with enhancer markers and RNA polymerase II, while the others are more correlated to chromatin architecture. DICs are observed in various cell types, including cells from patients with cohesinopathy. We also implement machine learning to our data and identified genomic features for isolating DICs from all cohesin sites. These results suggest a previously unidentified function of cohesin on intragenic regions for transcriptional regulation.
    DOI:  https://doi.org/10.1038/s41467-022-30792-9
  19. PLoS Comput Biol. 2022 Jun 06. 18(6): e1010162
      Human epigenome and transcription activities have been characterized by a number of sequence-based deep learning approaches which only utilize the DNA sequences. However, transcription factors interact with each other, and their collaborative regulatory activities go beyond the linear DNA sequence. Therefore leveraging the informative 3D chromatin organization to investigate the collaborations among transcription factors is critical. We developed ECHO, a graph-based neural network, to predict chromatin features and characterize the collaboration among them by incorporating 3D chromatin organization from 200-bp high-resolution Micro-C contact maps. ECHO predicted 2,583 chromatin features with significantly higher average AUROC and AUPR than the best sequence-based model. We observed that chromatin contacts of different distances affected different types of chromatin features' prediction in diverse ways, suggesting complex and divergent collaborative regulatory mechanisms. Moreover, ECHO was interpretable via gradient-based attribution methods. The attributions on chromatin contacts identify important contacts relevant to chromatin features. The attributions on DNA sequences identify TF binding motifs and TF collaborative binding. Furthermore, combining the attributions on contacts and sequences reveals important sequence patterns in the neighborhood which are relevant to a target sequence's chromatin feature prediction.
    DOI:  https://doi.org/10.1371/journal.pcbi.1010162
  20. Nature. 2022 Jun 08.
      DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.
    DOI:  https://doi.org/10.1038/s41586-022-04803-0
  21. Nat Cell Biol. 2022 Jun 06.
      Mitochondrial metabolites regulate leukaemic and normal stem cells by affecting epigenetic marks. How mitochondrial enzymes localize to the nucleus to control stem cell function is less understood. We discovered that the mitochondrial metabolic enzyme hexokinase 2 (HK2) localizes to the nucleus in leukaemic and normal haematopoietic stem cells. Overexpression of nuclear HK2 increases leukaemic stem cell properties and decreases differentiation, whereas selective nuclear HK2 knockdown promotes differentiation and decreases stem cell function. Nuclear HK2 localization is phosphorylation-dependent, requires active import and export, and regulates differentiation independently of its enzymatic activity. HK2 interacts with nuclear proteins regulating chromatin openness, increasing chromatin accessibilities at leukaemic stem cell-positive signature and DNA-repair sites. Nuclear HK2 overexpression decreases double-strand breaks and confers chemoresistance, which may contribute to the mechanism by which leukaemic stem cells resist DNA-damaging agents. Thus, we describe a non-canonical mechanism by which mitochondrial enzymes influence stem cell function independently of their metabolic function.
    DOI:  https://doi.org/10.1038/s41556-022-00925-9
  22. Mol Cancer. 2022 Jun 09. 21(1): 125
       BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear.
    METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype.
    RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression.
    CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.
    Keywords:  CBX2; Cancer; Chromatin readers; Epigenetics; Leukemia; PcG
    DOI:  https://doi.org/10.1186/s12943-022-01603-y
  23. PLoS Genet. 2022 Jun 09. 18(6): e1010223
      Oncohistone mutations are crucial drivers for tumorigenesis, but how a living organism governs the loss-of-function oncohistone remains unclear. We generated a histone H2B triple knockout (3KO) strain in Caenorhabditis elegans, which decreased the embryonic H2B, disrupted cell divisions, and caused animal sterility. By performing genetic suppressor screens, we uncovered that mutations defective in the histone H3-H4 chaperone UNC-85 restored H2B 3KO fertility by decreasing chromatin H3-H4 levels. RNA interference of other H3-H4 chaperones or H3 or H4 histones also rescued H2B 3KO sterility. We showed that blocking H3-H4 chaperones recovered cell division in C. elegans carrying the oncohistone H2BE74K mutation that distorts the H2B-H4 interface and induces nucleosome instability. Our results indicate that reducing chromatin H3-H4 rescues the dysfunctional H2B in vivo and suggest that inhibiting H3-H4 chaperones may provide an effective therapeutic strategy for treating cancers resulting from loss-of-function H2B oncohistone.
    DOI:  https://doi.org/10.1371/journal.pgen.1010223
  24. NAR Genom Bioinform. 2022 Jun;4(2): lqac041
      We present ePeak, a Snakemake-based pipeline for the identification and quantification of reproducible peaks from raw ChIP-seq, CUT&RUN and CUT&Tag epigenomic profiling techniques. It also includes a statistical module to perform tailored differential marking and binding analysis with state of the art methods. ePeak streamlines critical steps like the quality assessment of the immunoprecipitation, spike-in calibration and the selection of reproducible peaks between replicates for both narrow and broad peaks. It generates complete reports for data quality control assessment and optimal interpretation of the results. We advocate for a differential analysis that accounts for the biological dynamics of each chromatin factor. Thus, ePeak provides linear and nonlinear methods for normalisation as well as conservative and stringent models for variance estimation and significance testing of the observed marking/binding differences. Using a published ChIP-seq dataset, we show that distinct populations of differentially marked/bound peaks can be identified. We study their dynamics in terms of read coverage and summit position, as well as the expression of the neighbouring genes. We propose that ePeak can be used to measure the richness of the epigenomic landscape underlying a biological process by identifying diverse regulatory regimes.
    DOI:  https://doi.org/10.1093/nargab/lqac041
  25. Cell. 2022 Jun 02. pii: S0092-8674(22)00597-9. [Epub ahead of print]
      A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.
    Keywords:  CRISPR; Integrator complex; Perturb-seq; cell biology; chromosomal instability; genetic screens; genotype-phenotype map; mitochondrial genome stress response; single-cell RNA sequencing
    DOI:  https://doi.org/10.1016/j.cell.2022.05.013