J Clin Med. 2024 Nov 19. pii: 6966. [Epub ahead of print]13(22):
Despite a decrease in prevalence and incidence rates, beta thalassemia continues to represent a significant public health challenge worldwide. In high-resource settings, children with thalassemia have an open prognosis, with a high chance of reaching adulthood and old age with a good quality of life. This is achievable if transfusion therapy is properly managed, effectively mitigating ineffective erythropoiesis and its associated complications while also minimizing excessive iron accumulation. Adequate iron chelation is essential to maintain reactive forms of iron within the normal range throughout life, thus preventing organ damage caused by hemosiderosis, which inevitably results from a regular transfusion regimen. New therapies, both curative, such as gene therapy, and non-curative, such as modulators of erythropoiesis, are becoming available for patients with transfusion-dependent beta thalassemia. Two curative approaches based on gene therapy have been investigated in both adults and children with thalassemia. The first approach uses a lentivirus to correct the genetic defect, delivering a functional gene copy to the patient's cells. The second approach employs CRISPR/Cas9 gene editing to directly modify the defective gene at the molecular level. No non-curative therapies have received approval for pediatric use. Among adults, the only available drug is luspatercept, which is currently undergoing clinical trials in pediatric populations. However, in many countries around the world, the new therapeutic options remain a mirage, and even transfusion therapy itself is not guaranteed for most patients, while the choice of iron chelation therapy depends on drug availability and affordability.
Keywords: anemia; beta thalassemia; chelation; gene editing; gene therapy; iron overload; monogenic disorder; serum ferritin; transfusion therapy