bims-climfi Biomed News
on Cerebellar cortical circuitry
Issue of 2025–02–23
one paper selected by
Jun Maruta, Mount Sinai Health System



  1. Cerebellum. 2025 Feb 21. 24(2): 51
      In the cerebellar cortex, 17β-estradiol (E2) binds to estrogen receptors (ERs) and plays a role in regulating cerebellar synaptic plasticity and motor learning behaviors. However, the underlying mechanisms remain unclear. In this study, we investigated the effects of E2 on synaptic transmission between cerebellar molecular layer interneurons (MLIs) and Purkinje cells (PCs) in urethane-anesthetized mice. Using in vivo cell-attached and whole-cell recordings combined with immunohistochemistry, we examined MLI-PC synaptic responses elicited by facial air-puff stimulation. Cell-attached recordings from PCs demonstrated that air-puff stimulation of the ipsilateral whisker pad elicited MLI-PC synaptic currents (P1), which were significantly enhanced by local micro-application of E2 to the cerebellar molecular layer. The E2-induced potentiation of P1 amplitude exhibited dose dependency, with a 50% effective concentration (EC50) of 30 nM. The effects of E2 on amplitude of P1 and pause of simple spike firing were completely prevented by blockade of ERs or ERβ, but not by blockade of ERα or a G-protein coupled receptor (GPER). Application of a selective ERβ agonist mimicked and overwhelmed the E2-induced enhancement of the MLI-PC synaptic transmission. Whole-cell recording with biocytin staining showing that E2 does not change the spontaneous and the evoked spike firing properties of basket-type MLIs. Rotarod test indicated that microinjection of E2 onto the cerebellar surface significantly promotes initial motor learning ability, which is abolished by blockade of ERβ. ERβ immunoreactivity was expressed in the ML and PC layer, especially around the PC somata in the mouse cerebellar cortex. These results indicate that E2 binds to ERβ, resulting in an enhance in the cerebellar MLI-PC synaptic transmission and an improvement of initial motor learning ability in vivo in mice.
    Keywords:  Cerebellar molecular layer interneuron-Purkinje cell synaptic transmission; Estrogen receptors; Immunohistochemistry; In vivo cell-attached and whole-cell recording; Sensory stimulation
    DOI:  https://doi.org/10.1007/s12311-025-01805-2