bims-climfi Biomed News
on Cerebellar cortical circuitry
Issue of 2024–05–26
one paper selected by
Jun Maruta, Mount Sinai Health System



  1. Eur J Histochem. 2024 May 15. 68(2):
      Previous studies on the granular layer of the cerebellar cortex have revealed a wide distribution of different subpopulations of less-known large neuron types, called "non-traditional large neurons", which are distributed in three different zones of the granular layer. These neuron types are mainly involved in the formation of intrinsiccircuits inside the cerebellar cortex. A subpopulation of these neuron types is represented by the synarmotic neuron, which could play a projective role within the cerebellar circuitry. The synarmotic neuron cell body map within the internal zone of the granular layer or in the subjacent white substance. Furthermore, the axon crosses the granular layer and runs in the subcortical white substance, to reenter in an adjacent granular layer, associating two cortico-cerebellar regions of the same folium or of different folia, or could project to the intrinsic cerebellar nuclei. Therefore, along with the Purkinje neuron, the traditional projective neuron type of the cerebellar cortex, the synarmotic neuron is candidate to represent the second projective neuron type of the cerebellar cortex. Studies of chemical neuroanatomy evidenced a predominant inhibitory GABAergic nature of the synarmotic neuron, suggesting that it may mediate an inhibitory GABAergic output of cerebellar cortex within cortico-cortical interconnections or in projections towards intrinsic cerebellar nuclei. On this basis, the present minireview mainly focuses on the morphofunctional and neurochemical data of the synarmotic neuron, and explores its potential involvement in some forms of cerebellar ataxias.
    DOI:  https://doi.org/10.4081/ejh.2024.3954