Cerebellum. 2021 Nov 10.
This paper presents a model of learning by the cerebellar circuit. In the traditional and dominant learning model, training teaches finely graded parallel fibre synaptic weights which modify transmission to Purkinje cells and to interneurons that inhibit Purkinje cells. Following training, input in a learned pattern drives a training-modified response. The function is that the naive response to input rates is displaced by a learned one, trained under external supervision. In the proposed model, there is no weight-controlled graduated balance of excitation and inhibition of Purkinje cells. Instead, the balance has two functional states-a switch-at synaptic, whole cell and microzone level. The paper is in two parts. The first is a detailed physiological argument for the synaptic learning function. The second uses the function in a computational simulation of pattern memory. Against expectation, this generates a predictable outcome from input chaos (real-world variables). Training always forces synaptic weights away from the middle and towards the limits of the range, causing them to polarise, so that transmission is either robust or blocked. All conditions teach the same outcome, such that all learned patterns receive the same, rather than a bespoke, effect on transmission. In this model, the function of learning is gating-that is, to select patterns that trigger output merely, and not to modify output. The outcome is memory-operated gate activation which operates a two-state balance of weight-controlled transmission. Group activity of parallel fibres also simultaneously contains a second code contained in collective rates, which varies independently of the pattern code. A two-state response to the pattern code allows faithful, and graduated, control of Purkinje cell firing by the rate code, at gated times.
Keywords: Cerebellum; Circuit; Hypothesis; Learning; Network; Synapse; Theory