bims-climfi Biomed News
on Cerebellar cortical circuitry
Issue of 2019‒03‒31
two papers selected by
Jun Maruta
Mount Sinai Health System


  1. J Physiol. 2019 Mar 25.
      KEY POINTS: Purkinje cells in the cerebellum integrate input from sensory organs with that from premotor centres. Purkinje cells use a variety of sensory inputs relaying information from the environment to modify motor control. Here we asked to what extent the climbing fibre inputs to Purkinje cells signal mono- or multi-sensory information, and to what extent this signalling is subject to recent history of activity. We show that individual climbing fibres convey multiple types of sensory information, together providing a rich mosaic projection pattern of sensory signals across the cerebellar cortex. Moreover, firing probability of climbing fibres following sensory stimulation strongly depends on the recent history of activity, showing a tendency to homeostatic dampening.ABSTRACT: Cerebellar Purkinje cells integrate sensory information with motor efference copies to adapt movements to behavioural and environmental requirements. They produce complex spikes that are triggered by the activity of climbing fibres originating in neurons of the inferior olive. These complex spikes can shape the onset, amplitude and direction of movements and the adaptation of such movements to sensory feedback. Clusters of nearby inferior olive neurons project to parasagittally aligned stripes of Purkinje cells, referred to as 'microzones'. It is currently unclear to what extent individual Purkinje cells within a single microzone integrate climbing fibre inputs from multiple sources of different sensory origins, and to what extent sensory-evoked climbing fibre responses depend on the strength and recent history of activation. Here we imaged complex spike responses in cerebellar lobule crus 1 to various types of sensory stimulation in awake mice. We find that different sensory modalities and receptive fields have a mild, but consistent, tendency to converge on individual Purkinje cells, with climbing fibres showing some degree of input-specificity. Purkinje cells encoding the same stimulus show increased events with coherent complex spike firing and tend to lie close together. Moreover, whereas complex spike firing is only mildly affected by variations in stimulus strength, it strongly depends on the recent history of climbing fibre activity. Our data point towards a mechanism in the olivo-cerebellar system that regulates complex spike firing during mono- or multisensory stimulation around a relatively low set-point, highlighting an integrative coding scheme of complex spike firing under homeostatic control. This article is protected by copyright. All rights reserved.
    DOI:  https://doi.org/10.1113/JP277413
  2. Cerebellum. 2019 Mar 23.
      Lugaro cells are inhibitory interneurons found in the upper granular layer of the cerebellar cortex, just below or within the Purkinje cell layer. They are characterized by (1) a fusiform soma oriented in the parasagittal plane, (2) two pairs of dendrites emanating from opposite ends of the soma, (3) innervation from Purkinje cell collaterals, and (4) an axon that projects into the molecular layer akin to granular cell parallel fibers. Lugaro cells have been described in mammals, but not in other vertebrate classes, save one report in teleost fish. Here, we propose the existence of Lugaro cells in the avian cerebellum based on the morphological characteristics and connectivity described above. Immunohistochemical staining against the calcium binding protein secretagogin (SCGN) revealed Lugaro-like cells in the pigeon cerebellum. Some SCGN-labeled cells exhibit fusiform somata and dendrites parallel to the Purkinje cell layer in the parasagittal plane, as well as long axons that project into the molecular layer and travel alongside parallel fibers in the coronal plane. While mammalian Lugaro cells are known to express calretinin, the SCGN-labeled cells in the pigeon do not. SCGN-labeled cells also express glutamic acid decarboxylase, confirming their inhibitory function. Calbindin labeling revealed Purkinje cell terminals surrounding the SCGN-expressing cells. Our results suggest that Lugaro cells are more widespread among vertebrates than previously thought and may be a characteristic of the cerebellum of all vertebrates.
    Keywords:  Birds; Cerebellar circuits; Cerebellum; Evolution; Immunohistochemistry; Lugaro cells; Secretagogin
    DOI:  https://doi.org/10.1007/s12311-019-01023-7