bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2024‒04‒07
two papers selected by
Gabriela Da Silva Xavier, University of Birmingham



  1. Proc Natl Acad Sci U S A. 2024 Apr 09. 121(15): e2321338121
      To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.
    Keywords:  circadian; clock neurons; gene regulation
    DOI:  https://doi.org/10.1073/pnas.2321338121
  2. Sci Rep. 2024 04 02. 14(1): 7778
      Laboratory animals are typically maintained under 12-h light and 12-h dark (12:12 LD) conditions with a daytime light intensity of ~ 200 lx. In this study, we designed an apparatus that allowed mice to self-select the room light intensity by nose poking. We measured the behavioral rhythms of the mice under this self-controlled light regimen. The mice quickly learned the relationship between their nose pokes and the resulting changes in the light intensity. Under these conditions, the mice exhibited free-running circadian behavior with a period of 24.5 ± 0.4 h. This circadian period was ~ 1 h longer than that of the same strain of mice when they were kept in constant darkness (DD) after 12:12 LD entrainment, and the lengthened period lasted for at least 30 days. The rhythm of the light intensity controlled by the mice also exhibited a similar period, but the phase of the illuminance rhythm preceded the phase of the locomotor activity rhythm. Mice that did not have access to the light controller were also entrained to the illuminance cycle produced by the mice that did have access to the light controller, but with a slightly delayed phase. The rhythm was likely controlled by the canonical circadian clock because mice with tau mutations in the circadian clock gene CSNK1E exhibited short periods of circadian rhythm under the same conditions. These results indicate that the free-running period of mice in the wild may differ from what they exhibit if they are attuned by forced light cycles in laboratories because mice in their natural habitats can self-control their exposure to ambient light, similar to our experimental conditions.
    DOI:  https://doi.org/10.1038/s41598-024-58415-x