bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2023‒08‒13
three papers selected by
Gabriela Da Silva Xavier
University of Birmingham


  1. Cell Rep. 2023 Aug 04. pii: S2211-1247(23)00960-9. [Epub ahead of print]42(8): 112949
      Here, we demonstrate that hypothalamic astrocytic BMAL1 computes cyclic metabolic information to optimize energetic resources in a sexually dimorphic manner. Knockdown of BMAL1 in female astrocytes leads to negative energy balance and alters basal metabolic cycles without affecting circadian locomotor activity. Thus, astrocytic BMAL1 contributes to the control of energy balance through the modulation of the metabolic rate, hepatic and white adipose tissue lipogenesis, and the activity of brown adipose tissue. Importantly, most of these alterations are specific to hypothalamic astrocytic BMAL1. Moreover, female mice with BMAL1 knockdown in astrocytes exhibited a "male-like" metabolic obese phenotype when fed a high-fat diet. Overall, our results suggest a sexually dimorphic effect of astrocytic BMAL1 on the regulation of energy homeostasis, which may be of interest in the physiopathology of obesity and related comorbidities.
    Keywords:  CP: Metabolism; CP: Neuroscience
    DOI:  https://doi.org/10.1016/j.celrep.2023.112949
  2. Mol Microbiol. 2023 Aug 06.
      Dinoflagellates respond to daily changes in light and dark by changes in cellular metabolism, yet the mechanisms used are still unclear. For example, Fugacium (previously Symbiodinium) kawagutii shows little difference in the transcriptome between day and night suggesting little transcriptional control over gene expression. Here, we have performed ribosome profiling at 2 h intervals over a daily light-dark cycle to assess the degree to which protein synthesis rates might change over the daily cycle. The number of F. kawagutii coding sequences with significant differences in the number of ribosome-protected fragments (RPF) over the 24-h cycle was 2923 using JTK_Cycle and 3655 using ECHO. The majority of the regulated transcripts showed peak translation at the onset of the dark period. The regulated sequences were assigned to different KEGG pathways and transcripts that were translated at roughly the same time were termed concurrently regulated. Both analyses revealed concurrent regulation of many transcripts whose gene products were involved in spliceosome or lysosome biogenesis with peak translation rates around the onset of the dark period, while others, involved in nitrate metabolism and ribosomal proteins, were preferentially translated around the onset of the day phase or the end of the night phase, respectively. In addition, some sequences involved in DNA synthesis were preferentially translated at the end of the day. We conclude that light-dark cycles seem able to synchronize translation of some transcripts encoding proteins involved in a range of different cellular processes, and propose that these changes may help the cells adapt and alter their metabolism as a function of the time of day.
    Keywords:  cell metabolism; dinoflagellates; protein synthesis rates; ribosome profiling
    DOI:  https://doi.org/10.1111/mmi.15137
  3. EMBO J. 2023 Aug 09. e114164
      Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.
    Keywords:  body temperature; circadian rhythms; erythrocyte; haemoglobin; redox
    DOI:  https://doi.org/10.15252/embj.2023114164