bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2023‒04‒09
three papers selected by
Gabriela Da Silva Xavier
University of Birmingham


  1. Nat Med. 2023 Apr 06.
      Intermittent fasting appears an equivalent alternative to calorie restriction (CR) to improve health in humans. However, few trials have considered applying meal timing during the 'fasting' day, which may be a limitation. We developed a novel intermittent fasting plus early time-restricted eating (iTRE) approach. Adults (N = 209, 58 ± 10 years, 34.8 ± 4.7 kg m-2) at increased risk of developing type 2 diabetes were randomized to one of three groups (2:2:1): iTRE (30% energy requirements between 0800 and 1200 hours and followed by a 20-h fasting period on three nonconsecutive days per week, and ad libitum eating on other days); CR (70% of energy requirements daily, without time prescription); or standard care (weight loss booklet). This open-label, parallel group, three-arm randomized controlled trial provided nutritional support to participants in the iTRE and CR arms for 6 months, with an additional 12-month follow-up. The primary outcome was change in glucose area under the curve in response to a mixed-meal tolerance test at month 6 in iTRE versus CR. Glucose tolerance was improved to a greater extent in iTRE compared with CR (-10.10 (95% confidence interval -14.08, -6.11) versus -3.57 (95% confidence interval -7.72, 0.57) mg dl-1 min-1; P = 0.03) at month 6, but these differences were lost at month 18. Adverse events were transient and generally mild. Reports of fatigue were higher in iTRE versus CR and standard care, whereas reports of constipation and headache were higher in iTRE and CR versus standard care. In conclusion, incorporating advice for meal timing with prolonged fasting led to greater improvements in postprandial glucose metabolism in adults at increased risk of developing type 2 diabetes. ClinicalTrials.gov identifier NCT03689608 .
    DOI:  https://doi.org/10.1038/s41591-023-02287-7
  2. Proc Natl Acad Sci U S A. 2023 Apr 11. 120(15): e2211996120
      Disrupted circadian activity is associated with many neuropsychiatric disorders. A major coordinator of circadian biological systems is adrenal glucocorticoid secretion which exhibits a pronounced preawakening peak that regulates metabolic, immune, and cardiovascular processes, as well as mood and cognitive function. Loss of this circadian rhythm during corticosteroid therapy is often associated with memory impairment. Surprisingly, the mechanisms that underlie this deficit are not understood. In this study, in rats, we report that circadian regulation of the hippocampal transcriptome integrates crucial functional networks that link corticosteroid-inducible gene regulation to synaptic plasticity processes via an intrahippocampal circadian transcriptional clock. Further, these circadian hippocampal functions were significantly impacted by corticosteroid treatment delivered in a 5-d oral dosing treatment protocol. Rhythmic expression of the hippocampal transcriptome, as well as the circadian regulation of synaptic plasticity, was misaligned with the natural light/dark circadian-entraining cues, resulting in memory impairment in hippocampal-dependent behavior. These findings provide mechanistic insights into how the transcriptional clock machinery within the hippocampus is influenced by corticosteroid exposure, leading to adverse effects on critical hippocampal functions, as well as identifying a molecular basis for memory deficits in patients treated with long-acting synthetic corticosteroids.
    Keywords:  circadian rhythms; glucocorticoids; hippocampus; memory; methylprednisolone
    DOI:  https://doi.org/10.1073/pnas.2211996120