bims-ciryme Biomed News
on Circadian rhythms and metabolism
Issue of 2021–05–23
four papers selected by
Gabriela Da Silva Xavier, University of Birmingham



  1. Nat Commun. 2021 05 17. 12(1): 2862
      Dietary restriction (DR) decreases body weight, improves health, and extends lifespan. DR can be achieved by controlling how much and/or when food is provided, as well as by adjusting nutritional composition. Because these factors are often combined during DR, it is unclear which are necessary for beneficial effects. Several drugs have been utilized that target nutrient-sensing gene pathways, many of which change expression throughout the day, suggesting that the timing of drug administration is critical. Here, we discuss how dietary and pharmacological interventions promote a healthy lifespan by influencing energy intake and circadian rhythms.
    DOI:  https://doi.org/10.1038/s41467-021-22922-6
  2. J Exp Biol. 2020 Jan 01. pii: jeb.220699. [Epub ahead of print]
      Organisms use changes in photoperiod to anticipate and exploit favourable conditions in a seasonal environment. While species living at temperate latitudes receive day length information as a year-round input, species living in the Arctic may spend as much as two-thirds of the year without experiencing dawn or dusk. This suggests that specialised mechanisms may be required to maintain seasonal synchrony in polar regions. Svalbard ptarmigan (Lagopus muta hyperborea) are resident at 74-81° north latitude. They spend winter in constant darkness (DD) and summer in constant light (LL); extreme photoperiodic conditions under which they do not display overt circadian rhythms. Here we explored how arctic adaptation in circadian biology affects photoperiodic time measurement in captive Svalbard ptarmigan. For this purpose, DD-adapted birds, showing no circadian behaviour, either remained in prolonged DD, were transferred into a simulated natural photoperiod (SNP) or were transferred directly into LL. Birds transferred from DD to LL exhibited a strong photoperiodic response in terms of activation of the hypothalamic thyrotropin-mediated photoperiodic response pathway. This was assayed through expression of the Eya3, Tshβ and deiodinase genes, as well as gonadal development. While transfer to SNP established synchronous diurnal activity patterns, activity in birds transferred from DD to LL showed no evidence of circadian rhythmicity. These data show that the Svalbard ptarmigan does not require circadian entrainment to develop a photoperiodic response involving conserved molecular elements found in temperate species. Further studies are required to define how exactly arctic adaptation modifies seasonal timer mechanisms.
    Keywords:  Circadian; Deiodinase; Eyes absent; Pars tuberalis; Photoperiodism; Seasonal reproduction; Svalbard ptarmigan
    DOI:  https://doi.org/10.1242/jeb.220699
  3. J Endocrinol. 2021 May 01. pii: JOE-20-0611.R2. [Epub ahead of print]
      Bariatric surgery is still the most effective long-term weight-loss therapy. Recent data indicate that surgical outcomes may be affected by diurnal food intake patterns. In this study, we aimed to investigate how surgery-induced metabolic adaptations (i.e. weight loss) interact with circadian clock function. For that reason, vertical sleeve gastrectomy (VSG) was performed in obese mice and rhythms in behavior, tissue rhythmicity, and white adipose tissue transcriptome were evaluated. VSG under constant darkness conditions led to a maximum weight loss of 18 % compared to a loss of 3 % after sham surgery. Post-surgical weight development was characterized by two distinct intervals of catabolic and subsequent anabolic metabolic state. Locomotor activity was not affected. However, VSG significantly increased active phase meal frequency in the anabolic state. No significant effects on clock gene rhythmicity were detected in adrenal and white adipose tissue (WAT) explant cultures. Transcriptome rhythm analyses of subcutaneous WAT revealed a reduction of cycling genes after VSG (sham: 2,493 vs. VSG: 1,013) independent of sustained rhythms in core clock gene expression. This may be a consequence of weight loss-induced morphological reconstruction of WAT that overwrites the direct influence of the local clock machinery on the transcriptome. However, VSG altered rhythmic transcriptional regulation of WAT lipid metabolism pathways. Thus, our data suggest a reorganization of diurnal metabolic rhythms after VSG downstream of the molecular clock machinery.
    DOI:  https://doi.org/10.1530/JOE-20-0611
  4. Genes Dev. 2021 May 20.
      In mammals, a set of core clock genes form transcription-translation feedback loops to generate circadian oscillations. We and others recently identified a novel transcript at the Period2 (Per2) locus that is transcribed from the antisense strand of Per2 This transcript, Per2AS, is expressed rhythmically and antiphasic to Per2 mRNA, leading to our hypothesis that Per2AS and Per2 mutually inhibit each other's expression and form a double negative feedback loop. By perturbing the expression of Per2AS, we found that Per2AS transcription, but not transcript, represses Per2 However, Per2 does not repress Per2AS, as Per2 knockdown led to a decrease in the Per2AS level, indicating that Per2AS forms a single negative feedback loop with Per2 and maintains the level of Per2 within the oscillatory range. Per2AS also regulates the amplitude of the circadian clock, and this function cannot be solely explained through its interaction with Per2, as Per2 knockdown does not recapitulate the phenotypes of Per2AS perturbation. Overall, our data indicate that Per2AS is an important regulatory molecule in the mammalian circadian clock machinery. Our work also supports the idea that antisense transcripts of core clock genes constitute a common feature of circadian clocks, as they are found in other organisms.
    Keywords:  Period2; amplitude; antisense transcript; circadian; long noncoding RNA
    DOI:  https://doi.org/10.1101/gad.343541.120