Int J Mol Sci. 2025 Jul 18. pii: 6925. [Epub ahead of print]26(14):
Redox signaling is central to plant adaptation, influencing metabolic regulation, stress responses, and developmental processes through thiol-based oxidative post-translational modifications (oxiPTMs) of redox-sensitive proteins. These modifications, particularly those involving cysteine (Cys) residues, act as molecular switches that alter protein function, structure, and interactions. Advances in mass spectrometry-based redox proteomics have greatly enhanced the identification and quantification of oxiPTMs, enabling a more refined understanding of redox dynamics in plant cells. In parallel, the emergence of computational modeling, artificial intelligence (AI), and machine learning (ML) has revolutionized the ability to predict redox-sensitive residues and characterize redox-dependent signaling networks. This review provides a comprehensive synthesis of methodological advancements in redox proteomics, including enrichment strategies, quantification techniques, and real-time redox sensing technologies. It also explores the integration of computational tools for predicting S-nitrosation, sulfenylation, S-glutathionylation, persulfidation, and disulfide bond formation, highlighting key models such as CysQuant, BiGRUD-SA, DLF-Sul, and Plant PTM Viewer. Furthermore, the functional significance of redox modifications is examined in plant development, seed germination, fruit ripening, and pathogen responses. By bridging experimental proteomics with AI-driven prediction platforms, this review underscores the future potential of integrated redox systems biology and emphasizes the importance of validating computational predictions, through experimental proteomics, for enhancing crop resilience, metabolic efficiency, and precision agriculture under climate variability.
Keywords: computational modeling; machine learning; nitric oxide; redox proteomics; redox signaling networks; thiol-based oxidative post-translational modifications (oxiPTMs)