Vascul Pharmacol. 2025 Sep 30. pii: S1537-1891(25)00087-4. [Epub ahead of print] 107548
Glioblastoma (GBM) is the most prevalent and lethal primary brain tumor in adults, marked by rapid progression, profound intratumoral heterogeneity and poor prognosis despite multimodal therapy. Current standard-of-care treatments, including maximal surgical resection followed by radiotherapy and temozolomide chemotherapy, offer only modest survival benefits, with most patients facing inevitable recurrence. A defining feature of GBM is its pronounced vascular proliferation, which supports tumor progression. This has spurred interest in targeting angiogenesis as a potential treatment approach. Apelin, a peptide involved in the regulation of angiogenesis and endothelial cell proliferation, has emerged as a key player in GBM pathogenesis. The Apelin/APJ signaling pathway is implicated in promoting tumor vascularization, invasiveness, and resistance to therapy, making it a promising therapeutic target. This review explores the role of Apelin/APJ pathway in GBM progression, focusing on its contribution to angiogenesis, as well as tumor growth and invasiveness. By integrating current findings, we aim to establish the rationale for targeting Apelin signaling as a novel therapeutic strategy in GBM, with the ultimate goal of overcoming treatment resistance and improving patient outcomes.
Keywords: Angiogenesis inhibition; Anti-angiogenic therapy; Apelin; Glioblastoma; Immunotherapy; Tumor vasculature