bims-cepepe Biomed News
on Cell-penetrating peptides
Issue of 2024‒06‒23
seventeen papers selected by
Henry Lamb, Queensland University of Technology

  1. Angew Chem Int Ed Engl. 2024 Jun 20. e202406414
      mRNA display is a powerful technology to screen libraries of >1012 cyclic peptides against a protein target, enabling the rapid discovery of high affinity ligands. These cyclic peptides are particularly well suited to challenging protein targets that have been difficult to drug with small molecules. However, target choice can still be limited as screens are typically performed against purified proteins which often demands the use of isolated domains and precludes the use of aggregation-prone targets. Here, we report a method to perform mRNA display selections in mammalian cell lysates without the need for prior target purification, vastly expanding the potential target scope of mRNA display. We have applied the methodology to identify low to sub-nanomolar peptide binders for two targets: a NanoLuc subunit (LgBiT) and full-length bromodomain-containing protein 3 (BRD3). Our cyclic peptides for BRD3 were found to bind to the extraterminal (ET) domain of BRD3 and the closely related BRD proteins, BRD2 and BRD4. While many chemical probes exist for the bromodomains of BRD proteins, the ET domain is relatively underexplored, making these peptides valuable additions to the BRD toolbox.
    Keywords:  Chemical tools; Drug Discovery; Epigenetics; mRNA Display; peptides
  2. ACS Chem Biol. 2024 Jun 20.
      Peptide-bile acid hybrids offer promising drug candidates due to enhanced pharmacological properties, such as improved protease resistance and oral bioavailability. However, it remains unknown whether bile acids can be incorporated into peptide chains by the ribosome to produce a peptide-bile acid hybrid macrocyclic peptide library for target-based de novo screening. In this study, we achieved the ribosomal incorporation of lithocholic acid (LCA)-d-tyrosine into peptide chains. This led to the construction of a peptide-LCA hybrid macrocyclic peptide library, which enabled the identification of peptides TP-2C-4L3 (targeting Trop2) and EP-2C-4L5 (targeting EphA2) with strong binding affinities. Notably, LCA was found to directly participate in binding to EphA2 and confer on the peptides improved stability and resistance to proteases. Cell staining experiments confirmed the high specificity of the peptides for targeting Trop2 and EphA2. This study highlights the benefits of LCA in peptides and paves the way for de novo discovery of stable peptide-LCA hybrid drugs.
  3. Bioinformatics. 2024 Jun 12. pii: btae364. [Epub ahead of print]
      MOTIVATION: Macrocyclic peptides hold great promise as therapeutics targeting intracellular proteins. This stems from their remarkable ability to bind flat protein surfaces with high affinity and specificity while potentially traversing the cell membrane. Research has already explored their use in developing inhibitors for intracellular proteins, such as KRAS, a well-known driver in various cancers. However, computational approaches for de novo macrocyclic peptide design remain largely unexplored.RESULTS: Here, we introduce HELM-GPT, a novel method that combines the strength of the hierarchical editing language for macromolecules (HELM) representation and generative pre-trained transformer (GPT) for de novo macrocyclic peptide design. Through reinforcement learning (RL), our experiments demonstrate that HELM-GPT has the ability to generate valid macrocyclic peptides and optimize their properties. Furthermore, we introduce a contrastive preference loss during the RL process, further enhanced the optimization performance. Finally, to co-optimize peptide permeability and KRAS binding affinity, we propose a step-by-step optimization strategy, demonstrating its effectiveness in generating molecules fulfilling both criteria. In conclusion, the HELM-GPT method can be used to identify novel macrocyclic peptides to target intracellular proteins.
    AVAILABILITY AND IMPLEMENTATION: The code and data of HELM-GPT are freely available on GitHub (
    Keywords:  Generative pre-trained transformer; contrastive preference learning; de novo molecular design; macrocyclic peptide; reinforcement learning
  4. Molecules. 2024 Jun 04. pii: 2658. [Epub ahead of print]29(11):
      Spinal muscular atrophy (SMA) is a severe neuromuscular disorder that is caused by mutations in the survival motor neuron 1 (SMN1) gene, hindering the production of functional survival motor neuron (SMN) proteins. Antisense oligonucleotides (ASOs), a versatile DNA-like drug, are adept at binding to target RNA to prevent translation or promote alternative splicing. Nusinersen is an FDA-approved ASO for the treatment of SMA. It effectively promotes alternative splicing in pre-mRNA transcribed from the SMN2 gene, an analog of the SMN1 gene, to produce a greater amount of full-length SMN protein, to compensate for the loss of functional protein translated from SMN1. Despite its efficacy in ameliorating SMA symptoms, the cellular uptake of these ASOs is suboptimal, and their inability to penetrate the CNS necessitates invasive lumbar punctures. Cell-penetrating peptides (CPPs), which can be conjugated to ASOs, represent a promising approach to improve the efficiency of these treatments for SMA and have the potential to transverse the blood-brain barrier to circumvent the need for intrusive intrathecal injections and their associated adverse effects. This review provides a comprehensive analysis of ASO therapies, their application for the treatment of SMA, and the encouraging potential of CPPs as delivery systems to improve ASO uptake and overall efficiency.
    Keywords:  DG9; antisense oligonucleotides (ASOs); cell-penetrating peptides (CPPs); delivery; phosphorodiamidate morpholino oligomers (PMOs); spinal muscular atrophy (SMA)
  5. J Am Chem Soc. 2024 Jun 18.
      Nonproteinogenic amino acids, including d-α-, β-, and γ-amino acids, present in bioactive peptides play pivotal roles in their biochemical activities and proteolytic stabilities. d-α-Amino acids (dαAA) are widely used building blocks that can enhance the proteolytic stability. Cyclic β2,3-amino acids (cβAA), for instance, can fold peptides into rigid secondary structures, improving the binding affinity and proteolytic stability. Cyclic γ2,4-amino acids (cγAA) are recently highlighted as rigid residues capable of preventing the proteolysis of flanking residues. Simultaneous incorporation of all dαAA, cβAA, and cγAA into a peptide is expected to yield l-α/d-α/β/γ-hybrid peptides with improved stability and potency. Despite challenges in the ribosomal incorporation of multiple nonproteinogenic amino acids, our engineered tRNAPro1E2 successfully reaches such a difficulty. Here, we report the ribosomal synthesis of macrocyclic l-α/d-α/β/γ-hybrid peptide libraries and their application to in vitro selection against interferon gamma receptor 1 (IFNGR1). One of the resulting l-α/d-α/β/γ-hybrid peptides, IB1, exhibited remarkable inhibitory activity against the IFN-γ/IFNGR1 protein-protein interaction (PPI) (IC50 = 12 nM), primarily attributed to the presence of a cβAA in the sequence. Additionally, cγAAs and dαAAs in the resulting peptides contributed to their serum stability. Furthermore, our peptides effectively inhibit IFN-γ/IFNGR1 PPI at the cellular level (best IC50 = 0.75 μM). Altogether, our platform expands the chemical space available for exploring peptides with high activity and stability, thereby enhancing their potential for drug discovery.
  6. Methods Enzymol. 2024 ;pii: S0076-6879(24)00139-3. [Epub ahead of print]698 141-167
      While most FDA-approved peptide drugs are cyclic, robust cyclization chemistry of peptides and the deconvolution of the cyclic peptide sequences using tandem mass spectrometry render cyclic peptide drug discovery difficult. In this chapter, the protocol for the successful synthesis of tetrazine-linked cyclic peptide library in solid phase, which shows both robust cyclization and easy sequence deconvolution, is described. The protocol for the linearization and cleavage of cyclic peptides from the solid phase by simple UV light irradiation, followed by accurate sequencing using tandem mass spectrometry, is described. We describe the troubleshooting for this dithiol bis-arylation reaction and for the successful cleavage of the aryl cyclic peptide into linear form. This method for efficient solid-phase macrocyclization can be used for the rapid production of loop-based peptides and screening for inhibition of protein-protein interactions, by using the covalent inverse electron-demand Diels Alder reaction to supplement the non-covalent interaction between a protein and its peptide binder, isolating highly selective peptides in the process.
    Keywords:  Cyclic peptide; Library; Mass spectrometry; Photocleavage; Tetrazine
  7. Structure. 2024 Jun 05. pii: S0969-2126(24)00193-X. [Epub ahead of print]
      Disulfide-rich peptides such as defensins play diverse roles in immunity and ion channel modulation, as well as constituting the bioactive components of many animal venoms. We investigated the structure and bioactivity of U-RDTX-Pp19, a peptide previously discovered in venom of the assassin bug Pristhesancus plagipennis. Recombinant Pp19 (rPp19) was found to possess insecticidal activity when injected into Drosophila melanogaster. A bioinformatic search revealed that domains homologous to Pp19 are produced by assassin bugs and diverse other arthropods. rPp19 co-eluted with native Pp19 isolated from P. plagipennis, which we found is more abundant in hemolymph than venom. We solved the three-dimensional structure of rPp19 using 2D 1H NMR spectroscopy, finding that it adopts a disulfide-stabilized structure highly similar to known trans-defensins, with the same cystine connectivity as human α-defensin (I-VI, II-IV, and III-V). The structure of Pp19 is unique among reported structures of arthropod peptides.
    Keywords:  Reduviidae; alpha-defensin; assassin bug; bioinsecticide; disulfide-rich peptide; heteroptera; knottin; nuclear magnetic resonance; recombinant expression; venom peptide
  8. Cell Mol Life Sci. 2024 Jun 17. 81(1): 266
      Acid-sensing ion channels (ASICs) are trimeric proton-gated cation channels that play a role in neurotransmission and pain sensation. The snake venom-derived peptides, mambalgins, exhibit potent analgesic effects in rodents by inhibiting central ASIC1a and peripheral ASIC1b. Despite their distinct species- and subtype-dependent pharmacology, previous structure-function studies have focussed on the mambalgin interaction with ASIC1a. Currently, the specific channel residues responsible for this pharmacological profile, and the mambalgin pharmacophore at ASIC1b remain unknown. Here we identify non-conserved residues at the ASIC1 subunit interface that drive differences in the mambalgin pharmacology from rat ASIC1a to ASIC1b, some of which likely do not make peptide binding interactions. Additionally, an amino acid variation below the core binding site explains potency differences between rat and human ASIC1. Two regions within the palm domain, which contribute to subtype-dependent effects for mambalgins, play key roles in ASIC gating, consistent with subtype-specific differences in the peptides mechanism. Lastly, there is a shared primary mambalgin pharmacophore for ASIC1a and ASIC1b activity, with certain peripheral peptide residues showing variant-specific significance for potency. Through our broad mutagenesis studies across various species and subtype variants, we gain a more comprehensive understanding of the pharmacophore and the intricate molecular interactions that underlie ligand specificity. These insights pave the way for the development of more potent and targeted peptide analogues required to advance our understating of human ASIC1 function and its role in disease.
    Keywords:  ASIC; Allosteric modulation; Electrophysiology; Gating modifier; Ligand selectivity; Protein-protein interaction; Specificity; Venom peptide
  9. ACS Med Chem Lett. 2024 Jun 13. 15(6): 806-813
      Blocking the immunosuppressive function of T-cell immunoglobulin mucin-3 (TIM-3) is an established therapeutic strategy to maximize the efficacy of immune checkpoint inhibitors for cancer immunotherapy. Currently, effective inhibition of TIM-3 interactions relies on monoclonal antibodies (mAbs), which come with drawbacks such as immunogenicity risk, limited tumor penetration, and high manufacturing costs. Guided by the X-ray cocrystal structures of TIM-3 with mAbs, we report an in silico structure-based rational design of constrained peptides as potent TIM-3 inhibitors. The top cyclic peptide from our study (P2) binds TIM-3 with a K D value of 166.3 ± 12.1 nM as determined by surface plasmon resonance (SPR) screening. Remarkably, P2 efficiently inhibits key TIM-3 interactions with natural TIM-3 ligands at submicromolar concentrations in a panel of cell-free and cell-based assays. The capacity of P2 to reverse immunosuppression in T-cell/cancer cell cocultures, coupled with favorable in vitro pharmacokinetic properties, highlights the potential of P2 for further evaluation in preclinical models of immuno-oncology.
  10. Curr Opin Chem Biol. 2024 Jun 20. pii: S1367-5931(24)00058-9. [Epub ahead of print]81 102482
      The delivery of functional proteins, including antibodies, into cells opens up many opportunities to regulate cellular events, with significant implications for studies in chemical biology and therapeutics. The inside of cells is isolated from the outside by the cell membrane. The hydrophilic nature of proteins prevents direct permeation of proteins through the cell membrane by passive diffusion. Therefore, delivery routes using endocytic uptake followed by endosomal escape have been explored. Alternatively, delivery concepts using transient permeabilization of cell membranes or effective promotion of endocytic uptake and endosomal escape using modified membrane-lytic peptides have been reported in recent years. Non-canonical protein delivery concepts, such as the use of liquid droplets or coacervates, have also been proposed. This review highlights some of the topics in peptide-mediated intracellular protein delivery.
    Keywords:  Antibody; Cell membrane; Coacervate; Endosomal escape; Intracellular protein delivery
  11. Sci Rep. 2024 06 19. 14(1): 14175
      Central nervous system tumors have resisted effective chemotherapy because most therapeutics do not penetrate the blood-tumor-brain-barrier. Nanomedicines between  ~ 10 and 100 nm accumulate in many solid tumors by the enhanced permeability and retention effect, but it is controversial whether the effect can be exploited for treatment of brain tumors. PLX038A is a long-acting prodrug of the topoisomerase 1 inhibitor SN-38. It is composed of a 15 nm 4-arm 40 kDa PEG tethered to four SN-38 moieties by linkers that slowly cleave to release the SN-38. The prodrug was remarkably effective at suppressing growth of intracranial breast cancer and glioblastoma (GBM), significantly increasing the life span of mice harboring them. We addressed the important issue of whether the prodrug releases SN-38 systemically and then penetrates the brain to exert anti-tumor effects, or whether it directly penetrates the blood-tumor-brain-barrier and releases the SN-38 cargo within the tumor. We argue that the amount of SN-38 formed systemically is insufficient to inhibit the tumors, and show by PET imaging that a close surrogate of the 40 kDa PEG carrier in PLX038A accumulates and is retained in the GBM. We conclude that the prodrug penetrates the blood-tumor-brain-barrier, accumulates in the tumor microenvironment and releases its SN-38 cargo from within. Based on our results, we pose the provocative question as to whether the 40 kDa nanomolecule PEG carrier might serve as a "Trojan horse" to carry other drugs past the blood-tumor-brain-barrier and release them into brain tumors.
  12. bioRxiv. 2024 Apr 05. pii: 2024.04.03.588012. [Epub ahead of print]
      The blood-brain barrier (BBB), formed by specialized brain microvascular endothelial cells (BMECs), regulates brain function in health and disease. In vitro modeling of the human BBB is limited by the lack of robust protocols to generate BMECs from human iPSCs (hiPSCs). Here, we report generation of reprogrammed BMECs (rBMECs) through combining hiPSC differentiation into BBB-primed endothelial cells (bpECs) and reprogramming with two BBB transcription factors, FOXF2 and ZIC3. rBMECs express a subset of the BBB gene repertoire including tight junctions and transporters, exhibit higher paracellular barrier properties, lower caveolar-mediated transcytosis, and equivalent p-glycoprotein activity compared to primary HBMECs, and can be activated by oligomeric Aβ42. We then generated an hiPSC-derived 3D neurovascular system that incorporates rBMECs, pericytes, and astrocytes using the MIMETAS platform. This novel 3D system closely resembles the in vivo BBB at structural and functional levels and can be used to study pathogenic mechanisms of neurological diseases.
  13. Essays Biochem. 2024 Jun 13. pii: EBC20230083. [Epub ahead of print]
      In this review, we examine the protein-protein interactions of cytosolic malate dehydrogenase (MDH), an under-studied area in cellular metabolism. We provide a comprehensive overview of MDH involvement in metabolism, especially its interactions with metabolic partners and dynamics of changing metabolism. We present an analysis of the biophysical nature of these interactions and the current methods used to study them. Our review includes an assessment of computational docking studies, which offer initial hypotheses about potential MDH interaction partners. Furthermore, we provide a summary of the sparse yet insightful experimental evidence available, establishing a foundation for future research. By integrating biophysical analysis and methodological advancements, this paper aims to illuminate the intricate network of interactions involving cytosolic MDH and their metabolic implications. This work not only contributes to our understanding of MDH's role in metabolism but also highlights the potential impact of these interactions in metabolic disorders.
    Keywords:  Malate dehydrogenase; carbohydrate metabolism; cytosol; protein-protein interactions
  14. Biomed Pharmacother. 2024 Jun 20. pii: S0753-3322(24)00875-8. [Epub ahead of print]177 116991
      Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions. In particular KRAS mutations have been identified as main drivers of macropinocytosis in pancreatic, breast, and non-small cell lung cancers. We performed a high-content screening to identify inhibitors of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC)-derived cells, aiming to prevent nutrient scavenging of PDAC tumors. The screening campaign was conducted in a well-known pancreatic KRAS-mutated cell line (MIAPaCa-2) cultured under nutrient deprivation and using FITC-dextran to precisely quantify macropinocytosis. We assembled a collection of 3584 small molecules, including drugs approved by the Food and Drug Administration (FDA), drug-like molecules against molecular targets, kinase-targeted compounds, and molecules designed to hamper protein-protein interactions. We identified 28 molecules that inhibited macropinocytosis, with potency ranging from 0.4 to 29.9 μM (EC50). A few of them interfered with other endocytic pathways, while 11 compounds did not and were therefore considered specific "bona fide" macropinocytosis inhibitors and further characterized. Four compounds (Ivermectin, Tyrphostin A9, LY2090314, and Pyrvinium Pamoate) selectively hampered nutrient scavenging in KRAS-mutated cancer cells. Their ability to impair albumin-dependent proliferation was replicated both in different 2D cell culture systems and 3D organotypic models. These findings provide a new set of compounds specifically targeting macropinocytosis, which could have therapeutic applications in cancer and infectious diseases.
    Keywords:  Drug repurposing; Drug screening; FDA-approved drugs; Ivermectin (PubChem CID: 6321424); LY2090314 (PubChem CID: 10029385); Macropinocytosis; Pancreatic ductal adenocarcinoma (PDAC); Pyrvinium Pamoate (PubChem CID: 54680693); Tyrphostin A9 (PubChem CID: 5614)
  15. J Nat Prod. 2024 Jun 20.
      The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.
  16. Cancer Res. 2024 Jun 17.
      The genetic landscape of cancer cells can lead to specific metabolic dependencies for tumor growth. Dietary interventions represent an attractive strategy to restrict the availability of key nutrients to tumors. In this study, we identified that growth of a subset of melanoma was severely restricted by a rationally designed combination therapy of a stearoyl-CoA desaturase (SCD) inhibitor with an isocaloric low-oleic acid diet. Despite its importance in oncogenesis, SCD underwent monoallelic co-deletion along with PTEN on chromosome 10q in about 47.5% of melanoma, and the other SCD allele was methylated, resulting in very low SCD expression. While this SCD deficient subset was refractory to SCD inhibitors, the subset of PTEN wildtype melanoma that retained SCD was sensitive. As dietary oleic acid could potentially blunt the effect of SCD inhibitors, a low-oleic acid custom diet was combined with SCD inhibitor. The combination reduced monounsaturated fatty acids and increased saturated fatty acids, inducing robust apoptosis and growth suppression and inhibiting lung metastasis with minimal toxicity in preclinical mouse models of PTEN wildtype melanoma. When combined with anti-PD1 immunotherapy, the SCD inhibitor improved T cell functionality and further constrained melanoma growth in mice. Collectively, these results suggest that optimizing SCD inhibitors with diets low in oleic acid may offer a viable and efficacious therapeutic approach for improving melanoma treatment.
  17. Trends Cancer. 2024 Jun 11. pii: S2405-8033(24)00111-0. [Epub ahead of print]
      Approved BRAF inhibitors have shown limited clinical benefit due to recurrent disease progression. In a recent Cancer Discovery paper, Yaeger et al. show that a next-generation BRAF inhibitor, PF-07799933, has widespread therapeutic activity in experimental models and patients who were refractory to treatment with approved BRAF inhibitors.
    Keywords:  BRAF; CRAF; RAF1; dimerization; paradoxical effect; resistance